
 
 
 

CLASSIFICATION AND QUANTIFICATION OF BEET & CANE SUGAR BY 
USING OPTICAL SPECTROSCOPY AND CHEMOMETRICS 

 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 
 
 
 

BY 
 

HİLMİ ERİKLİOĞLU 
 
 
 
 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR 

THE DEGREE OF MASTER OF SCIENCE 
IN 

FOOD ENGINEERING 

 
 
 
 
 
 
 

SEPTEMBER 2022





 
 
 

Approval of the thesis: 
 

CLASSIFICATION AND QUANTIFICATION OF BEET & CANE SUGAR 
BY USING OPTICAL SPECTROSCOPY AND CHEMOMETRICS 

 
submitted by HİLMİ ERİKLİOĞLU in partial fulfillment of the requirements for 
the degree of Master of Science in Food Engineering, Middle East Technical 
University by, 
 
Prof. Dr. Halil Kalıpçılar  
Dean, Graduate School of Natural and Applied Sciences 

 

 
Prof. Dr. Serpil Şahin 
Head of the Department, Food Engineering 

 

 
Assoc. Prof. Dr. Halil Mecit Öztop  
Supervisor, Food Engineering, METU 

 

 
Assist. Prof. Dr. Ali Can Karaca  
Co-Supervisor, Computer Engineering, Yıldız Technical 
University 

 

 
 
Examining Committee Members: 
 
Prof. Dr. Behiç Mert 
Food Engineering, METU 

 

 
Assoc. Prof. Dr. Halil Mecit Öztop  
Food Engineering, METU 

 

 
Assist. Prof. Dr. Ali Can Karaca  
Computer Engineering, Yıldız Technical University 

 

 
Prof. Dr. Deniz Çekmecelioğlu  
Food Engineering, METU 

 

 
Prof. Dr. Marena Manley 
Food Science and Technology, Stellenbosch University 

 

 
 

Date: 02.09.2022 
 



 
 

iv 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also declare 
that, as required by these rules and conduct, I have fully cited and referenced 
all material and results that are not original to this work. 

 

  

Name Last name : Hilmi Eriklioğlu 

Signature :  

 

 



 
 
v 
 

ABSTRACT 

 

CLASSIFICATION AND QUANTIFICATION OF BEET & CANE SUGAR 
BY USING OPTICAL SPECTROSCOPY AND CHEMOMETRICS 

 
Eriklioğlu, Hilmi 

Master of Science, Food Engineering 
Supervisor: Assoc. Dr. Halil Mecit Öztop 

Co-Supervisor: Assist. Prof. Dr. Ali Can Karaca 
 
 

September 2022, 113 pages 

 

 

Sucrose is one of the main ingredients used in food industry. It is obtained mainly 

from two different sources; sugar beet and sugar cane. Due to govermental 

regulations, cane sugar is not allowed to be produced in Turkey.  On the other hand, 

cane sugar can be illegally sold as beet sugar. Since molecular structure of sucrose 

is same, it is difficult to differentiate sources by using chemical methods. Therefore, 

developing more practical and affordable methods would be valuable for the food 

industry. Optical spectroscopy (UV-VIS-NIR) can be a promising technique for 

detection of differences. In this thesis, sucrose samples (cane, beet) were collected 

from nine countries to prepare 25% (w/w) sucrose water solutions and their 

absorbances were recorded (200-1380nm). Results showed that, spectral signature 

differences were observable between 200-600 nm. It is known that improving the 

prediction accuracy requires chemometrics, such as linear discriminant analysis 

(LDA), soft independent modelling of class analogy (SIMCA), k-nearest neighbors 

(KNN) and classification and regression trees (CART). All methods showed high 

performance, but LDA gave 100% correct classification with a simple interpretation. 

In addition, binary mixtures of these sugar were also prepared for quantification 

analysis. Multiple linear regression (MLR) with Savitsky Golay (SG) and the first 
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derivative, gave the most acceptable results of root mean square error of calibration 

(RMSEC), prediction (RMSEP) and residual predictive deviation (RPD) values of 

2.956, 3.026 and 10.251 respectively. The obtained results seemed promising for the 

plant source of sucrose to be detected by using UV region and chemometrics. 

 

Keywords: Sucrose, sugar cane, sugar beet, optical spectroscopy, chemometrics 
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ÖZ 

 

OPTİK SPEKTROSKOPİ VE KEMOMETRİ KULLANARAK PANCAR VE 
KAMIŞ ŞEKERİNİN SINIFLANDIRILMASI VE KARIŞIMLARDAKİ 

MİKTARININ TESPİTİ  
 

Eriklioğlu, Hilmi 
Yüksek Lisans, Gıda Mühendisliği 

Tez Yöneticisi: Doç. Dr. Halil Mecit Öztop 
Ortak Tez Yöneticisi: Dr. Öğretim Üyesi Ali Can Karaca 

 

 

Eylül 2022, 113 sayfa 

 

Sükroz, şeker endüstrisinde kullanılan ana maddelerden biridir. Dünya çapında 

sükroz, şeker pancarı ve şeker kamışı olmak üzere iki farklı kaynaktan 

üretilmektedir. Ancak, hükümet politikaları nedeniyle şeker kamışının Türkiyede 

üretilmesine izin verilmemiştir. Öte yandan, şeker kamışı yasadışı olarak pancar 

şekeri olarak satılabilir.. Sükrozun moleküler yapısı aynı olduğu için kimyasal 

yöntemlerle kaynağını ayırt etmek zordur. Bu nedenle daha pratik ve ekonomik 

yöntemlerin geliştirilmesi gıda endüstrisi için değerli olacaktır. Optik spektroskopi 

(UV-VIS-NIR), farklılıkların tespiti için umut verici bir teknik olabilir. Bu 

araştırmada, farklı bitki kaynaklarından (kamış, pancar) %25 (w/w) sükroz su 

solüsyonları hazırlamak için dokuz ülkeden sükroz örnekleri toplanmış ve 

absorbansları 200-1380nm arasında kaydedilmiştir. Sonuçlar 200-600 nm arasında 

spektral imza farklılıkları olduğunu ortaya koymuştur. Tahmin doğruluğunun 

iyileştirilmesinin LDA, SIMCA, KNN ve CART gibi kemometrik yaklaşımları 

gerektirdiği bilinmektedir. Sonuçlar, birkaç yöntemin yüksek performans 

gösterdiğini, ancak LDA'nın en basit yorumla %100 doğru sınıflandırma verdiğini 

göstermektedir. Ayrıca, kantifikasyon analizi için değişen konsantrasyonlar yoluyla 

bu şekerlerin ikili karışımları hazırlanmıştır. En kabul edilebilir sonuçları veren 
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çoklu doğrusal regresyon (MLR), Savitsky Golay filtresi ve birinci türev ile birlikte, 

sırasıyla 2.956, 3.026 and 10.251 olan, RMSEC, RMSEP ve RPD değerlerini verdi. 

Elde edilen sonuçlar, sakarozun bitki kaynağının UV bölgesi ve kemometrik 

yöntemler kullanılarak tespit edilebileceği konusunda umut verici görünmektedir. 

 

Anahtar Kelimeler: Sükroz, şeker pancarı, şeker kamışı, optik spektroskopi, 

kemometri 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Sugar 

Sugar, being one of the main energy sources of human metabolism, has been 

obtained from various sources throughout the history. It is a product that carries a 

strategic role all over the world. Other than being a fundamental food product, sugar 

is a protected commodity for all countries because of its contributions to the 

agricultural production, by-product evaluation and employment opportunities 

(Eştürk, 2018). In confectionary industry, invert sugar, corn syrup and sucrose are 

used as sugar sources.  

Corn syrup is a starch-based sugar and one of the most preferred sugar sources in the 

industry since its production cost is low when compared to the other alternatives. 

High fructose corn syrup is a sweeter version of corn syrup, and it is obtained by 

converting glucose contained by corn syrup to the fructose.  

 

Sucrose also known as table sugar is mostly produced from sugar beet and sugar 

cane. It is a disaccharide that contains glucose and fructose subunits (Figure 1.1). It 

has a relatively low glycemic index of 65 because of the fructose subunit (Wolever, 

2006). Fructose has a very small effect on increasing blood glucose levels (Wolever, 

2006). The molecular formula of sucrose is C12H22O11. 
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Figure 1.1 Molecular structure of sucrose. 

 

1.2 Sources of Sucrose 

Worldwide, sucrose is mainly produced by using either sugar cane or sugar beet. 

According to 'World, the EU and Turkey Sugar Stats' report published by 

PANKOBİRLİK, which is the cooperation of Turkish beet producers, between 2016 

and 2017 cane sourced sugar covered 77.60% of world’s sucrose production 

meanwhile beet sugar was only 22.40% (PANKOBİRLİK, 2017). Another report 

prepared by Turkish Sugar Factories in 2017-2018 stated that 78% of annual 

production was obtained from sugar cane and 22% from sugar beet (Türkiye Şeker 

Fabrikaları, 2018). Due its high production volume, prices of the world sugar market 

are determined based on sugar cane, (Kaya, 2015).  

  

Geographical locations of the countries play the most important role on source of 

sugar (Sefaoğlu et al., 2016).  While sugar cane (Saccharum officinarum) grows in 

the tropical climate zone, sugar beet (Beta vulgaris saccharifera L.) grows in 

different climatic zones and regions located between 30° south-60° north latitudes. 

From one decare of sugar cane, 2-4 times higher sucrose yields can be obtained when 

compared to sugar beet.  Due to this efficiency, the production and raw material costs 

of cane sugar are much lower than beet sugar. However, because of the climatic 

conditions, for some countries, it is not possible to grow sugar cane. 
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Due to the geographical conditions, some countries such as, Turkey, Russia, Ukraine, 

Belarus and EU are producing their sugar from sugar beet and countries like USA, 

Japan, China are producing from both sources. Brazil, India, Thailand, Mexico, 

Pakistan, Australia and a high number of other countries are producing from cane 

(Thow et al., 2021).  In (Table 1) and (Table 2), sugar beet and sugar cane production 

amount of different countries are presented. 

 

Table 1. Top 15 sugar cane producing countries (Thow et al., 2021) 
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Table 2. Top 15 sugar beet producing countries (Thow et al., 2021) 

 

 

When production efficiency is considered, producing sugar from sugar cane is by far 

more advantageous than using sugar beet as source. However, in some countries such 

as Turkey it is forbidden to produce sugar from sugar cane due to some governmental 

policies. Maintaining sugar production by using sugar beet might not be economical 

in one perspective, but there are other aspects such as foreign dependency, 

employment of farmers and regional factory workers, protecting natural balance and 

ongoing social and economic life.  

Sugar beets are not the source of sucrose only, but also with its by-products such as 

beet pulp, pectin and cellulose, which are natural additives, contribute to the food 

production ecosystem. Molasses, which is obtained after processing beet is used as 

an animal feed and one of the main raw materials of yeast industry. With above-

mentioned benefits, use of sugar beet to produce sugar is helpful for sustainable life 

by contributing to meat and milk production (Türkiye Şeker Fabrikaları, 2018). Also, 
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in Germany and France, using sugar beet as a source of sucrose is being supported 

by government. 

 

Because of the differences in production efficiency, hence high gap between the cost 

of white sugar obtained from sugar beet and cane, cane sugar could sometimes enter 

to the country with illegal ways. When the news in the media is examined, no 

significant case has been found regarding cane sugar smuggling into the country for 

the last five years, nevertheless possibility of such incident is always there, because 

of the reasons mentioned above.  

In this regard, it is expected from the scientists to find easily applicable and quick 

analysis methods, which require less expertise and low-cost materials to differentiate 

source of the sucrose. 

 

1.3 Differences Between Cane and Beet Sugar  

There is no significant difference between sugars obtained from beet and cane 

sources as both of them have greater than 99.8% sucrose as the final product (Asadi, 

2007). However, there are some differences in the production step. Sugar beets are 

refined in same factory with the addition of SO2, whereas sugar canes go under 

different refining process. First, raw cane sugar is produced in factory and then 

transported to a separate refinery (Asadi, 2007). 

There are studies that investigated the differences between sugars obtained from beet 

and cane. Chemical structures of sucrose for both beet and cane are same however, 

there are differences in the sensory properties, aroma profiles, thermal behaviors and 

small levels of chemical compound disparities (Asadi, 2007; Godshall et al., 1995; 

Lu et al., 2017; Urbanus et al., 2014).  
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Urbanus et al. (2014) suggested that the differences between plant sources can be 

detected by sensory analysis panels by making an experienced panelist to try cane 

and beet sugars, which were produced by different companies located in USA 

(Urbanus et al., 2014). In another study conducted by the same team, the sugar used 

in the first study were tested in different food formulations (Messupé cake (pavlova); 

sugar syrup; cookies; pudding; whipped cream; iced tea). While there were 

differences observed for meringue cake and sugar syrup, no statistical difference was 

detected for other formulations (p>0.05) (Urbanus et al., 2014). 

One of the most important differences between cane and beet plants are their 

photosynthesis mechanisms. CO2 fixation mechanisms during dark phase of 

photosynthesis are different for the two plants (Lu et al., 2017).  Sugar beet is a C3 

plant (Calvin-Benson mechanism) whereas sugar cane is a C4 plant (Hatch-Slack 

mechanism). Adaptation to drier and warmer environments of C4 plants are high 

whereas, C3 plants are more adaptive to cooler and high moisture environments. C3 

plants produce three-carbon compounds as their first stable product. In C4 plants 

photosynthesis occur 2 times more than C3 plants.  

The carbon isotopes ratio (13C/12C) of both plant is different, it is 25% for beet sugar 

and 11% for cane sugar (Bubnik et.al., 1995). The reason of the difference is that C4 

plants metabolize almost all 13C which are coming from CO2. However, C3 plants 

are not as efficient as C4, they lose more 13C from their leaves during photosynthesis 

(O’leary, 1988), High resolution NMR Spectroscopy and Isotope Ratio (IR)-Mass 

Spectrometry use this approach for differentiating cane and beet sugar as will be 

described in the latter section. 

Another marker that can be used for beet and cane sugar differentiation is the 

presence of raffinose and theanderose. Theanderose is only present in cane sugar, 

and it is considered as a natural constituent (Moreldu Boil, 1996). Raffinose is 

present in both cane and beet sugar however in beet sugar, raffinose levels are higher 

compared to cane (Vaccari & Mantovani, 1995; Morel du Boil, 1997). It is also 
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known that both theanderose and raffinose influence morphology and crystal growth 

(Liang et al., 1989; Morel du Boil, 1992). 

Melting behavior and crystallinity of sucrose have also been studied for many years. 

Sucrose, a crystalline solid, was expected to have stable and non-changing melting 

point, nevertheless, melting behavior of sucrose was reported in wide variety of 

results. In a study conducted by Shah and Chakradeo (1936), impurity of the samples 

was stated as the only reason of those variances. Powers (1956, 1958) suggested that 

the reason is the water inclusions inside mother syrup.  On the other hand, beet and 

cane sugar were shown to have different thermal behaviors when examined by 

differential scanning calorimeter (DSC). In the DSC thermograms, number of peaks 

was reported as two for cane samples and one for beet and also thermal stability 

degree of beet was found to be greater than cane. Moreover, heating rate dependency 

was found higher for cane compared to beet (Lu et al., 2017). However, it was stated 

in the studies that further research was necessary to understand the reason of 

differences, and to assess how impurities play a significant role in those variations.  

 

In another study, differences in terms of ash conductivity, pH range and moisture 

content were examined. It was reported that the pH range of beet sugar was wider 

than cane sugar, being 6.5 to 8.0 and 6.2 to 6.7 for beet sugar and cane sugar 

respectively, while there was no significant difference detected for ash conductivity 

and moisture content (Godshell, 2013). A study was published about detecting the 

polysaccharides amount, that could not be removed after all clarifications, in the final 

sucrose product. Total polysaccharides amount residing in sugar cane was reported 

as 169 ppm (solids) and 77 ppm for beet samples. Amounts were initially 8238 ppm 

and 4067 ppm for cane and beet raw juices respectively (Godshell, 2002). In terms 

of the whole impurities, beet juice contained 2.5% (w/w) whereas cane juice 

contained 5% (w/w) of non- sugar compounds. Finally, fibers in whole fruit were 

studied and the ratio for beet was found as 5% (w/w) and 10% for cane (Asadi, 2007).  
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Such diversities are also the reason why different production approaches are 

necessary to produce sucrose from two sources (Asadi, 2007). Overall, studies 

showed that even after all clarification processes, some non-sucrose compounds can 

remain inside the end-product and the amount of impurities can be different for sugar 

cane and sugar beet. 

 

For many years, considering the differences that were mentioned above, high number 

of studies were conducted to detect beet and cane sources of sucrose. In the following 

section the different approaches used for differentiation purposes will be explained. 

 

1.4 Methods Used for Differentiation of the Source of Sugar (Sucrose) 

Based on the differences mentioned above, several methods have been studied in the 

literature including sensory analysis, ion chromatography profiles, nuclear magnetic 

resonance spectroscopy (NMR), differential scanning calorimetry (DSC) and isotope 

ratio mass spectroscopy (IRMS). 

 

1.4.1 Sensory Analysis 

Based on the differences in aroma profiles and flavors, sensory analysis could be a 

differentiating method for the source of the sucrose. In a study, 100 panelists who 

are 23% male and 73% female, ages ranging from 18 to 55 years, attended a tetrad 

test. Samples were given in three sets, each corresponding to a different condition.  

Following the test, the panelists were able to distinguish between cane and beet 

sources of sugar. Cane sugars were characterized with sweet aftertaste and fruity 

aroma by-mouth, on the other hand, beet sugars were associated with earth, barnyard, 
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oxidized and off-diary, off-flavors. Beet sugars were also characterized by burnt 

sugar aroma by-mouth with an aftertaste (Urbanus et al., 2014). 

Some analytical techniques were also tested to understand the effects of various 

volatile fatty acid compounds, and it was stated that the rejected beet sugars possess 

high amount of volatile fatty acids which then, suggested as the reason of above-

mentioned off-flavors (Godshell et.al. 1995; Moore et. al., 2004). And the presence 

of volatile components inside beet sugar were associated with decomposition of 

some parts of the plant, microbial contamination of the beet root and the soil itself 

(Marsili et. al., 1994; Godshell et.al., 1995; Lu et. al. 2003).  

 

1.4.2 Ion Chromatography Profiles 

Ion chromatography was proposed as a differentiation tool of plant origin of sucrose 

and quantification of the cane and beet mixtures. Chromatographic method focuses 

on the above-mentioned raffinose and theanderose contents of beet and cane 

originated sugars. It was suggested that, by using ion chromatography with 

integrated pulsed amperometric detection (IC-IPAD), also known as high 

performance anion-exchange chromatography (HPAEC), 20% white cane sugar 

adulterated beet sugar was successfully detected (Eggleston et. al., 2005).  

 

According to Eggleston (2005), before applying more sophisticated techniques such 

as Nuclear Magnetic Resonance (NMR), Isotope Ratio Mass Spectroscopy (IRMS) 

and Differential Scanning Calorimetry, IC-IPAD can be used as a screening tool for 

industrial approaches. In the same study, it was also proposed that, using further 

chemometric methods can enhance the performance of the IC-IPAD. 
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1.4.3 Nuclear Magnetic Resonance Spectroscopy (NMR) 

It has been known that by using high resolution (HR) NMR spectroscopy, it is 

possible to classify and quantify sugar beet and cane samples. This NMR method is 

based on using the difference of (13C) carbon isotope content of C1, C4, C5, C6 

positions of fructosyl and C1, C2 and C3 positions of glucosyl moieties of the 

sucrose molecule. A study suggested that NMR spectroscopy can be an alternative 

for semi-quantification and routine detection of cane sugar adulteration with IRMS 

methods (Monakhova & Diehl, 2016). 

 

Another study that used HR-NMR for a discrimination tool was published in 1991. 

Chemometric approaches such as principal component analysis (PCA), principal 

discriminant analysis (PDA) and hierarchical clustering, was used to analyze 

isotropic variables in the form of a multidimensional space. By using site-specific 

natural isotope fractionation by deuterium NMR with mentioned chemometric 

approaches, a successful discrimination between beet and cane originated white 

sugars, was achieved (Martin et al., 1991). 

 

1.4.4 Differential Scanning Calorimetry (DSC) 

As mentioned above, several studies were conducted about different thermal 

behaviors of cane and beet sugars. A study conducted in 2017 suggested that beet 

and cane sugars possess substantial differences when thermal behaviors are 

considered (Lu et al., 2017). Beet and cane sugars differentiated from each other by 

parameters such as heating rate dependency, degree of thermal stability and number 

of DSC peaks (one peak for beet samples and two peaks for cane samples) (Lu et al., 

2017). 
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1.4.5 Isotope Ratio Mass Spectroscopy (IRMS)  

There are two types of isotopes, radioactive isotopes and stable isotopes. If an isotope 

of an atom is going under radioactive decay by emitting rays such as a-, b- and g- 

rays, it is called as a radioactive isotope and if the isotope does not radioactively 

decay, then it is categorized as a stable isotope. Numerous elements such as carbon, 

hydrogen, oxygen, nitrogen and sulfur have two or more stable isotopes. Stable 

isotopes used for biological system analysis are mainly 1H and 2H, 14N and 15N, 12C 

and 13C, 18O and 16O. On the other hand, isotopes such as 3H, 14C, 32P, 35S, 125I, 131I 

are used for the same type of analysis as radioactive isotopes (Türkiye Atom Enerjisi 

Kurumu, 2015).  

 

By measuring stable isotope ratios of carbon, nitrogen and oxygen elements, 

geographical origin of foodstuffs can be determined. Analyzing isotopic carbon, 

provides information about photosynthesis group of the plant. Since sugar beet and 

sugar cane follow different photosynthesis pathways, stable isotope ratios can be 

used as an indicator of sugar origin (Bubnik et.al., 1995).  

 

Many studies have been carried out to determine the type of sugar by the stable 

isotope method. It was used to detect the adulteration of honey with beet sugar 

(Gonzalez Martin et al., 1998), to decide whether mulberry molasses is mixed with 

sugar syrup (Tosun, 2014) and in the determination of sugars for vinegar production 

(Perini et al., 2018). IRMS is now considered as a widely accepted method used for 

authentication of sugar plant origin. However, it requires an advance level of 

expertise with equipment, operation, and maintenance costs. In this study, referring 

to that problem, a new approach which includes equipment that is relatively cheap 

with very low operating costs, easy to use interface, will be introduced. 
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1.5  Optical Spectroscopy 

Spectroscopic analysis techniques are based on interaction between matter and 

radiated energy to detect different properties of materials. Nature of this interaction 

can be named as absorption, reflection and transmission. Being an inexpensive and 

fast analysis method that requires minimal sample preparation, optical spectroscopic 

techniques have been widely used by researchers for many purposes including 

agricultural and food traceability (Fanelli et al., 2021).  

 

Optical spectroscopy is used for both classification and quantification purposes. 

Main principle of differentiation between materials by optical spectroscopy is the 

interaction of the light with different materials, chemical bonds or physical surfaces. 

When a compound is excited with radiation, chemical bonds in organic materials 

give responses such as changing absorption or emission characteristics for different 

wavelengths. From those spectral fingerprints, which are determined by the type of 

the bond, mass of the atoms, shape of the molecule or other valuable information is 

extracted and used for classification or quantification (Magnus et al., 2021). 

 

Lately UV-VIS spectra, which corresponds to (200-800nm) wavelengths of 

electromagnetic spectrum has gained a high number of interests among food 

scientists and utilized for food analysis purposes, because of its easy application, 

relatively low equipment costs and minimum sample preparation requirements. For 

significant number of studies, methods based on UV spectrum was used for 

authentication of food materials and to detect adulteration (Alamprese et al., 2013; 

Boggia et al., 2017; Dankowska & Kowalewski, 2019; Fanelli et al., 2021). 

Moreover, implementation of UV spectroscopy for routine analysis is also possible 

(Suhandy & Yulia, 2021).  
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An article published in 2017 suggests that, by using UV-VIS region spectrum and 

pattern recognition methods, such as class modelling and principal component 

analyses (PCA) which are mentioned later, it is possible to authenticate a new 

category of plant food supplements (Boggia et al., 2017). In this method, extracts of 

plant tissues coming from different species were studied in terms of absorbance 

values for different wavelengths. And those absorption profiles were related with 

genetically determined phytocomplexes of plant tissues (Boggia et al., 2017).  

 

Another study was conducted in 2019, to classify tea types by using combination of 

UV-VIS, fluorescence and NIR spectroscopic techniques (Dankowska & 

Kowalewski, 2019). With the implementation of several chemometric approaches 

results were quite promising. All green, white, yellow, dark, oolong and black tea 

samples gave different spectral signatures obtained from mentioned regions. As a 

conclusion, different teas were classified with less than 3.3% error, it was suggested 

that these promising results can be utilized for routine analysis techniques with 

success (Dankowska & Kowalewski, 2019). 

 

A quantitative study by using UV-VIS Spectroscopy was published in 2017. Where 

Concentration of the blends obtained from Coffea arabica and Coffea canephoa var. 

robusta, was examined by using UV-VIS region for quantification purposes 

(Dankowska et al., 2017). It was shown that there was a significant difference 

between UV-VIS spectral patterns between water extracts of mentioned coffee 

derivatives. Best predictive ability was obtained by applying multiple linear 

regression (MLR) for 60nm interval with the values of 3.6% and 7.9% for RMSEC 

and RMSEV respectively (Dankowska et al., 2017). 

 

Classification of wine samples were studied with UV spectroscopy by the 

implementation of chemometric methods in 2013. Sauvignon Blanc Wines was 
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collected in Argentina from 2 vintages and 3 different geographical origins. It was 

concluded that with the help of the chemometric methods, UV-VIS spectroscopy, 

showed correct classification and correlation between wine samples (Azcarate et al., 

2013). Same researchers also referred to a complication that is also an important 

factor for this study. Some parameters such as number of samples, similarities which 

came from harvested soil, climate and several characteristics could limit the 

performance of the classification problem (Azcarate et al., 2013). Since, if the 

similarities or differences in the other parameters, affect the selected spectrum 

significantly, classification could be misled. Solution to this problem could be 

overcome by monitoring the results with other reference methods, finding the direct 

relation between target variance and spectrum, and increasing the sample set. 

 

Up to now, numerous supportive publications and methods to detect differences were 

investigated in above parts. Now as the final section of the introduction, chemometric 

data analysis methods, which includes qualitative and quantitative analysis 

approaches, will be briefly introduced. 

 

1.6 Chemometrics 

Chemometrics was emerged when computers started to be used in chemical analysis 

methods. In 1970s, some groups already applied some of the todays known 

chemometric methods. However, the name chemometrics was first introduced by 

Swede Svante Wold and American Bruce R. Kowalski in 1972 during a conference. 

After several years, multiple conference series and journals mentioned the name 

chemometrics (Otto, 2017). The definition of chemometrics is as follows: 

It is the chemical discipline which uses the statistical and chemical methods, (a) to 

design or select optimal measurement procedures and experiments, and (b) to 

provide maximum chemical information by analyzing related chemical data (Massart 
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et al., 1988). In Figure 1.2, relation between chemometrics and different disciplines 

can be seen. 

 

 

 

 

Figure 1.2. Relation of chemometrics with other disciplines (Brereton, 2003). 

 

Application of chemometric methods for complex matrices such as food materials is 

a well interested topic for both food scientist and analytical chemists. For many 

years, numerous studies were conducted with the integration of spectroscopic 

methods having complex matrices and high number of variables which require 

multivariate data analysis tools such as chemometrics (Cámara et al., 2010; 

Dankowska & Kowalewski, 2019; Magnus et al., 2021; Suhandy & Yulia, 2021; 

Torrecilla et al., 2008). Almost all publications, which includes spectroscopy and 

multivariate data analysis methods, suggested that application and for some cases, 

combination of several chemometric approaches, improved model capability, by 

decreasing misclassification rates and lowering regression errors (Diniz et al., 2016; 
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Gad et al., 2013; Liu et al., 2010; Suhandy & Yulia, 2017; vanden Branden & Hubert, 

2005). 

 

Preprocessing methods are important tools for chemometric applications. 

Preprocessing is used to correct scattering effects, baseline shifts, temperature, 

particle size, texture deviations. Savitsky-Golay is one of the important 

preprocessing techniques that is used to remove unwanted spectral effects and 

smooth data. With first derivative it was used in food industry to increase data quality 

and prediction ability (Ren et al., 2021). 

 

In following section, several chemometric methods that were used in this study are 

introduced.  

 

1.6.1 Unsupervised Methods 

The term unsupervised comes from ‘not having a target value that will be included 

for the assessment of the model quality’, simply meaning the lack of Y matrix used 

for predictions while performing supervised methods. Unsupervised methods such 

as principal component analysis (PCA) and hierarchical clustering are useful for 

analyzing clusters that do not require a sample labeling as concentration or class. 

With those algorithms, one can observe groupings and patterns that are otherwise 

unlikely to be visualized. Human brain is more comfortable in understanding 3-

dimensional space. But when the number of variables increases, it is hard to 

comprehend hidden properties even with high level of expertise. With concepts 

based on distances or dimensionality reduction, above mentioned algorithms are 

making multivariate data more understandable for researchers. 
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1.6.1.1 Principal Component Analysis (PCA) 

PCA is a chemometric tool to analyze multivariate data by using dimensionality 

reduction approach. PCA was first introduced by Pearson (1901). It was described 

as lines and planes of the closest fit to systems of points in space (S. Wold et al., 

2007). PCA is also mentioned briefly by Fisher and Mackenzie as being more 

convenient than variance analysis for response data modelling (Fisher & Mackenzie, 

1923). They also outlined NIPALS algorithm that developed PCA to the present 

version, however it was later rediscovered by Herman Wold (Wold, 1973). 

 

In short, it approximates a data matrix, X, as a product of T and PT matrices which 

are smaller than original X matrix, containing information about essential patterns 

of X data. Moreover, dominating object patterns of original data can be seen by 

plotting columns of T and variable patterns are observable in the rows of PT 

(Esbensen & Geladi, 2009). From Figure 1.3, structure of a PCA model can be 

observed, where E is a residual matrix. 

 

 

Figure 1.3. Visualization of a PCA model, where residuals (E) have the identical 
structure as the data (X) (Bro & Smilde, 2014). 
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PCA basically interprets complex datasets, which contain high number of variables 

with collinearities and remodels it, to be expressed as several factors called as 

components. Spectroscopic data require such chemometric tools to increase its 

descriptive performance. Without any supervised method application, PCA can be 

performed to see the clusters and different groupings reside in the data matrix. PCA 

with ultraviolet spectral measurements used for food authentication and regression 

models for many years and still is a topic that attracts scientist attention (Boggia et 

al., 2017; Dankowska et al., 2017; Magnus et al., 2021; Suhandy & Yulia, 2021). 

 

1.6.1.2 Hierarchical Cluster Analysis (HCA) 

HCA was originated from taxonomy where biological systems ordering has been 

made with their phenomenological similarities. In this method, hierarchical 

aggregation was used to differentiate objects. HCA analysis was applied according 

to the distances such as Euclidean, Mahalanobis and similarities such as single 

linkage, complete linkage between samples (Otto, 2017). Several researchers have 

applied HCA for unsupervised classification (Lin et al., 2015; Patras et al., 2011). 

 

1.6.2 Supervised Methods 

1.6.2.1 Linear Discriminant Analysis (LDA)  

LDA is a multivariate probabilistic classification method, which works under the 

principle that for all considered classes there is a normal distribution with the 

identical covariance-variance matrix (Pouliarekou et al., 2011). Several studies in 

terms of food analysis were conducted including, classification of three different 
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botanical origins of Curcumae Rhizoma by using UV spectroscopy (Ren et al., 2021), 

cocoa bean cultivars authentication with non-destructive methods (Teye et al., 2016), 

quality grading of in-situ cocoa beans by using optical spectroscopy (Kutsanedzie et 

al., 2017), quantification of coffees in blends using UV spectra (Dankowska et al., 

2017). 

 

1.6.2.2 Classification and Regression Trees (CART) 

The aim of the classification analysis is to build an accurate classifier or disclosing 

the predictive structure of the problem. Purpose of algorithm can be expressed as 

finding the interactions between variables to obtain the simplest characterization 

conditions (Breiman Leo et al., 1984). In a study, which investigated the 

spectroscopic data of several food materials such as beer, oil and olive; it was 

concluded that using CART for classification and regression analysis was efficient, 

simple and could cope with data collinearity problems that are observed in spectral 

datasets (Kucheryavskiy, 2018). Here, in (Figure 1.4) classification nodes for an 

example study is shown. 

 

Figure 1.4. Classification tree model for iris data (Loh, 2014). 

 



 
 

20 

1.6.2.3 Soft independent modelling of class analogy (SIMCA) 

SIMCA was first introduced by Svante Wold, as a method, which uses similarity and 

analogy terms to analyze chemical data (S. Wold & Sjöström, 1977). SIMCA 

operates, by applying PCA to the classes separately, this approach gives more 

information related to the classes about separation measures and relation between 

different variables (vanden Branden & Hubert, 2005). Application of the PCA in 

SIMCA was quite useful since with this way working with high number of variables 

is possible (Bicciato et al., 2003). Soft, implies that the model can classify multiple 

classes and if any of the samples were not overlapping with assigned classes, model 

can identify them as not-classified. It can be used with different number of PC’s. 

 

SIMCA as a classification method used for various studies, to classify tea infusions 

according to their variety and geographical origin with the UV spectrum integration 

(Diniz et al., 2016), to detect adulteration in pistachios (Menevseoglu et al., 2021) 

and to discriminate pea berry coffee using 190 and 400nm regions of optical 

spectroscopy (Suhandy & Yulia, 2017). 

 

1.6.2.4 K-Nearest Neighbors (KNN) 

KNN can be considered as a non-parametric and simple classification method, firstly 

introduced by Fix and Hodges in 1951. KNN simply assigns a test subject to a class 

or group by following the majority vote procedure. The assigned class is basically 

the most representative one in training the object of k nearest. When assessing the 

similarity of two objects, commonly used distance methods are Mahalanobis 

distance and Euclidean distance (Wu & Massart, 1997). In (Figure 1.5) a visual 

representation of the method is given. Target object is assigned to the class by 

selecting minimum distances (Otto, 2017).  
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Figure 1.5. Separation boundary of two classes (Otto, 2017). 

 

1.6.2.5 Partial Least Square Regression (PLSR) 

PLS method was initially proposed around 1975 by scientist Herman Wold to model 

complex datasets in the form of matrices and chains and then further developed by 

algorithms such as Non-linear Iterative Partial Least Squares (NIPALS) (Wold, 

Sjostrom, et al., 2001). PLSR is a multivariate data analysis tool that is widely used 

for quantitative analysis on spectral data and relates X matrix, which is absorbance 

to the y vector, the concentration for this study. With the PLSR models, highly 

informative results can be achieved about the relation of X matrix and y vector, when 

compared with traditional regression methods like multiple linear regression, 

ANOVA and t-tests (Wold, Sjostrom, et al., 2001). In (Figure 1.6) geometric 

representation of PLSR method is depicted. 
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Figure 1.6. Geometric representation of PLSR (Wold, Sjostrom, et al., 2001). 

 

PLSR has been utilized for several regression approaches such as, to predict 

chemical properties of fish muscle (Cheng & Sun, 2017), quantification of Curcumae 

Rhizoma by using UV-VIS spectroscopy and HPLC (Ren et al., 2021), fast detection 

of adulteration, made by adding carob flour to the cocoa powder (Quelal Vásconez 

et al., 2018). 

 

1.6.2.6 Multiple Linear Regression (MLR) 

Linear regression is a well-known and a popular regression tool applied for numerous 

quantification problems. By using LD algorithm, also known as multiple linear 

regression (MLR) if number of variables is more than one, regression function can 

be modelled as a linear combination of predictors. Therefore, parameters of the 

model can be easily interpreted. While estimating model parameters, there are 

several methods including maximum likelihood, Bayesian approach, robust 
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estimation, least squares and ridge regression (Su et al., 2012). Hovewer, there is a 

challenge with using linear regression about ill-posed datasets. If number of variables 

are higher than number of samples MLR cannot be calculated. To solve that problem 

regularization techniques can be utilized such as ridge regression (Wu et al., 1996). 

MLR was used for several food analysis applications such as to quantify blends of 

Coffea arabica and Coffea canephora var. robusta by using UV-VIS spectroscopy 

and synchronous fluorescence (Dankowska et al., 2017), quantitative analysis of 

histamine by using raman spectroscopy (Xiao-ying et al., 2019). 

 

In (Table 3), recent applications of above-mentioned chemometric methods which 

were utilized for food analysis compiled, with preprocessing methods and 

wavelength intervals. 
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1.7 Aim of the Study 

Sucrose is produced from both sugar cane and sugar beet. However, some countries 

are not able to grow sugar cane because of their climatic conditions. Producing sugar 

cane is more efficient, thus less costly when compared to beet and for this reason, 

several incidents have occurred throughout the history about the illegal use of sugar 

cane. Differentiating sugar cane and beet with chemical methods is challenging and 

suggested methods are expensive, complicated or slow. Therefore, a quick and 

affordable analysis method that requires less expertise while operation is a need in 

the industry. The objective of this thesis is to apply optical spectroscopy that covers 

200-1400 nm range with the implementation of several chemometric methods and to 

classify and quantify beet and cane sources of sugar. 

 

Hypothesis of the study is formed as; Using optical spectroscopy in UV-VIS-NIR 

region with chemometric approaches, to observe spectral signature differences, 

which occur as a result of impurities, one can distinguish and quantify different 

sucrose sources, as beet or cane. 
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CHAPTER 2  

2 MATERIALS AND METHODS 

In this section, properties of materials and description of the methods which are used 

for this study, are explained. Different chemometric methods were utilized firstly, to 

differentiate sugar beet and sugar cane sources (referred as classification). Secondly, 

to predict concentrations of binary mixtures which were prepared by using beet and 

cane sugars (referred as quantification) regression methods were applied. 

 

2.1 Materials 

Different sucrose samples originated from sugar cane and sugar beet plants were 

collected from 9 different countries and 23 different brands. For classification 

purpose, only known source samples and white sugars were used. In order to prepare 

a solution from sucrose crystals and powders, distilled water was used. In (Table 4), 

one can see sample information. 

 

Table 4. Grouping of sucrose by its origin (Code; first two letters are country, third 
letter is color of sugar, fourth letter is source) 

Sr. 

No. 
Country  Code Source 

  

S_01 Pakistan PKWC  Sugarcane   

S_02 Portugal  PTBC  Sugarcane   

S_03 Portugal  PTWC  Sugarcane   

S_04 Poland PLW  Unknown  

S_05 Poland PLW   Unknown  
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Table 4 (cont’d) 

S_06 Poland PLBC  Sugarcane   

S_07 Poland PLW  Unknown  

S_08 Poland PLW  Unknown  

S_09 Poland PLW   Unknown  

S_10 Romenia ROW   Unknown   

S_11 Italy  ITWC  Sugarcane   

S_12 Italy  ITBC  Sugarcane   

S_13 Serbia RSWB    Sugarbeet 

S_14 Serbia RSWB    Sugarbeet 

S_15 Serbia RSWB    Sugarbeet 

S_16 Serbia RSWB    Sugarbeet 

S_17 Belarus BLWC  Sugarcane   

S_18 Belarus BLWB    Sugarbeet 

S_19 Belarus BLWB    Sugarbeet 

S_20 Poland PLW 
 

Unknown  

S_21 Ukraine UKW 
 

Unknown   

S_22 Colombia COBC  Sugarcane   

S_23 Belarus BLWC  Sugarcane   

S_24 Belarus BLWB    Sugarbeet 

S_25 Belarus BLWB    Sugarbeet 

      

*(For example, PKWC means, sugar collected from Pakistan, it is a white cane sugar, 

W means white, and B means brown). 
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2.2 Methods 

A summary of the chemometric methods used in the study is given in (Figure 2.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Chemometric analysis flowchart. 
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2.2.1 Preparation of Sucrose Solutions for Spectral Analysis 

For classification part, from every sucrose bag, two different 25% (w/w) sucrose  

solutions were prepared and 5 replicates from each were taken for further analysis.  

In quantification part, selected beet and cane sugars were mixed at different 

concentrations from 0% (w/w) beet sugar to 100% (w/w) beet sugar with 5% (w/w) 

increments to obtain a binary mixture that has a final concentration of  25% (w/w) 

sucrose. All samples were mixed properly before adding water since spectroscopy 

analysis requires good representative sampling. Samples were stirred with magnetic 

stirrers after addition of water inside beakers for about 10 minutes and following 

sucrose dissolution, they were placed into quartz cuvettes (10 mm path lenght). 

 

2.2.2 Spectral Measurements 

Absorbance data were recorded by using UV-VIS-NIR scanning spectrophotometer 

UV-3101PC (Shimadzu, Japan) that covered a spectral rage from 200nm to 3000nm. 

For classification of beet and cane samples, wavelength ranging from 200nm to 

1300nm were used with 1 nm spectral resolution. All measurements were conducted 

at a slow scan speed, with 1nm of slit width and 1 nm of sampling interval.  

 

In quantification part, the wavelength interval was 200nm-600nm with the same 1nm 

spectral resolution. In classification part of the study, every measurement was 

recorded with an air reference. However, in quantification part both cuvette holders 

were used and for the reference, a cuvette filled with distilled water was used to 

remove the effect of the solvent. 

 



 
 

31 

2.2.3 Principal Component Analysis 

PCA was mainly used for classification purposes to easily interpret and visualize the 

multivariate data. For this study, the number of PCs were selected as two for easy 

visualization of scores in a 2-D graph. And the two PCs were already capable of 

explaining most of the variation in the data set as discussed later. PCA was applied 

by using MATLAB® Release 2022a, The MathWorks, Inc., Natick, Massachusetts, 

United States. 

 

2.2.4 Hierarchical Cluster Analysis (HCA) 

HCA was used to have an opinion about the methods which used ‘distance-based 

approaches’, before supervised classification methods. Both Euclidian and 

Mahalonobis distances were used, and mean centering was applied to the 

spectroscopic data as a preprocessing. Linkage method was selected as incremental 

and algorithm was run as sample oriented. 

 

2.2.5 Data Treatment and Preprocessing 

Obtained UV-VIS raw spectra were preprocessed with different methods to remove 

noise and eliminate unnecessary variables. In addition, first derivate (FD) was used 

to remove baseline differences under Savitsky Golay algorithm with 5 windows and 

2nd order polynomial. These preprocessing methods were only used for 

quantification part of the study. 

 

At first, to easily visualize the methods on 2-D graphs, PCA was applied to the 

dataset and first two components were used for classification methods. Then all 



 
 

32 

variable (wavelength) data were included, and results were obtained. For all 

chemometric analysis, first 5-fold cross validation (CV) was applied to the whole 

dataset. Furthermore, the samples were randomly divided into two different forms as 

train and test samples. In total 124 samples were examined in whole dataset for 

classification, and later 85 samples were selected for train and 39 as a separate test 

set. All results are presented in figures and tables in the later sections. 

 

2.2.6 Linear Discriminant Analysis 

For classification purposes, linear discriminant analysis (LDA) was used. Since LDA 

operates well under a specific ratio between sample number and variable number, 

high number of variables in spectral data, compared to sample number could make 

the model unstable. To solve that problem first, PCA was applied to decrease the 

number of factors that was used for LDA and then 5 different wavelengths 

determined by trial-and-error, based on maximum classification performance. 

 

2.2.7 Decision Trees 

Classification and regression tree (CART) provide structural mapping that consists 

of binary selection (Kotsiantis, 2013). By selecting the variables between numerous 

input data, algorithm grows tree like shapes with root nodes. Any root that is added 

to the algorithm is based on an appointed value for one variable, which is also called 

univariate split. These splits are basically threshold values selected from variables, 

which are used to differentiate between samples. Main aim of the algorithm is to 

improve the model performance by adding one split with the least split number 

possible. For this study, only two roots were applied on PC1 and PC2 scores. 
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2.2.8 K-Nearest Neighbors (KNN) 

Another method of classification is the k nearest neighbors (kNN). Classes of this 

study was assigned by using the majority vote procedure. As a distance method, 

Mahalonobis distance was used, since it can tackle with collinearity problem, which 

spectral data have. Number of neighbors was selected as 10 and none of the row or 

column preprocessing was applied. While assessing the model 5-fold cross 

validation and separate train and test dataset were used. 

 

2.2.9 Soft Independent Modelling of Class Analogy (SIMCA) 

SIMCA is a method that works with PCA, for dimensionality reduction from the 

dataset PCA is applied. For this study, optimum number of PCs selected as 2. 

Algorithm tested different number of PCs and shows which one gave the maximum 

sensitivity, specificity (will be explained in section below) and minimum error.  
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2.2.10 Evaluation of Classification Models 

Evaluation of the classification models were done as seen in  (Figure 2.2). 

 

True Positive (TP) False Positive (FP) 

False Negative (FN) True Negative (TN) 

 

Figure 2.2. Confusion matrix. 

 

Where; 

TP = Sugar cane identified as sugar cane. 

TN = Sugar beet identified as sugar beet. 

FP = Sugar cane identified as sugar beet. 

FN = Sugar beet identified as sugar cane. 

Sensitivity = TP/(TP+FN) 

Specificity = TN/(TN+FP) 

Precision = TP/(TP+FP) 

Accuracy = TP+TN/(TP+FP+FN+TN) 

 

2.2.11 Partial Least Squares Regression (PLSR) 

Similar to PCA, PLSR also works with component but in this case, they are called 

latent variables/factors. Also, in PLSR, while applying regression for the chosen 

dataset, X matrix decomposition is guided by the variance in y vector, thus the main 

cane 

beet 

cane beet 
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purpose is to increase the co-variation between y and X. Basic linear model can be 

shown as: 

 

𝑦 = 𝑋𝑏 + 𝑒                                                              (1) 

 

Where e is residual and b is the vector containing coefficients of regression obtained 

after model calibration. Operating with latent variables gives the ability to work with 

spectral data that contains high collinearity (S. Wold, Trygg, et al., 2001). For this 

study, different number of latent variables (LV) were used such as 2,5 and 8 to 

increase the models’ ability with least number of LV’s. Different number of variables 

were tested, and results are given in Chapter 3. 

 

2.2.12 Variable Selection with PLS 

PLS was applied with also using ‘searching combination moving window interval 

‘PLS (scmwiPLS), which is a variable selection method (Du et al., 2004). In this 

method, after selecting the size of the windows (number of variables in one window), 

algorithm decides the best combination of windows with the least RMSEP. 

Furthermore, different number of windows were compared and selected according 

to their performance result, which is RMSEP.   

 

In this study, scmwiPLS was used for finding the combinations of informative bands 

to increase prediction capability of the PLS model. For unprocessed data, 3 windows 

were used with 6 wavelengths as window size and model was calculated with 5 

factors. For the preprocessed data, 7 windows were used with 9 wavelengths as 

window size and model was calculated with 8 factors. 
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2.2.13 Multiple Linear Regression 

Multiple Linear Regression (MLR) was used to build a quantification model. Ridge 

regularization was applied for tackling with multicollinearity problem, since MLR 

gives biased prediction results if independent variables are highly correlated. Also, 

different wavelengths were tested. 

 

2.2.14 Evaluations of Linear Regression (LR) and Partial Least Squares 

(PLS) Regression Models 

In regression part both linear regression and PLS regression was applied to the 

dataset. To calculate the performance of the models, dataset was split into two 

subgroups as test and train samples and following equations were used for RMSEP 

(also RMSEC), residual prediction deviation (RPD) and coefficient of determination 

(R2). 

𝑅𝑀𝑆𝐸𝑃 = 	-∑ (#!$#%!)"#
!$%

'
                                    (2) 

 

 

𝑅( = 1 −	
)∑ ((!)(*!)"

#
!$%

#

)∑ ((!)(,)"
#
!$%

#

                                        (3) 

 

 

𝑅𝑃𝐷 = *+,
-.*/0

                                                      (4) 
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Where n is the number of samples in the validation set, 𝑦1 is reference result for 

sample i, 𝑦1 is mean of y values and 𝑦21 is the results that were estimated by the 

algorithms, which corresponds to test sample i Eq. (2). Correlation coefficients 

between known and predicted values were calculated by Eq. (3). STD means 

standard deviation and RPD values were calculated by Eq. (4). 

 

Preprocessing methods and spectral regions were selected by considering minimum 

RMSECV for whole dataset, RMSEP and high R2 values.  

 

While performing PLS, number of latent variables which covers the adequate 

variance of data were kept as low as possible to achieve high performing predictions. 

 

2.2.15 Software and Algorithms 

PLS without variable selection and linear regression with and without Savitsky 

Golay and first derivative preprocessing methods was conducted with called Orange 

(Demšar et al., 2013). ScmwiPLS and all classification methods were performed with 

MATLAB (The Mathworks, Natick, MA, USA). While performing classification, 

‘classification toolbox’ of MATLAB was used (Ballabio & Consonni, 2013). 
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CHAPTER 3  

3 RESULTS AND DISCUSSION 

Sucrose samples, originated from sugar beet and sugar cane were investigated by 

using a spectrophotometer that covers UV-VIS-NIR regions of the electromagnetic 

spectrum. Firstly, raw spectra of the samples were examined to extract valuable 

information from the samples and then different chemometric techniques were 

applied for a selected subset of samples for classification of sugar beet and cane 

originated sucrose. Finally, a regression analysis was conducted on sugar beet and 

cane samples for completion of the method. Results are given by different statistical 

analysis methods with their evaluation parameters, which are:  

• absorbance for different wavelengths in raw spectra,  

• sensitivity and specificity for classification of beet and cane samples, and  

• RMSECV, RMSEC, RMSEP, R2 and RPD values for regression analysis. 
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3.1 Classification of Beet and Cane Sugar 

3.1.1 Raw Spectral Data & Sample Selection 

  

Figure 3.1. Spectral data of all 25 sugar beet and cane samples without preprocessing. 

 

As can be seen from (Figure 3.1), most of the differences were observed in the UV 

region of the spectra. Possible reasons for this case exist and discussed later. But one 

can easily understand that by just looking at the UV region, for some samples UV 

absorbance values were too high for spectrometer to read (detector was saturated), 

and for other samples absorption data increased drastically. Those samples belonged 

to brown sugar crystals, since in UV region, colored compounds are highly absorbed. 

After analyzing all samples including brown sugars, it was decided that such high 

color deviations should be excluded from spectral data to effectively differentiate 

Water Absorption Peaks 

(200-400 nm UV) 

(400-700 nm Visible) 

(700-1400 nm NIR) 

Brown Sugars 
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sugar beet and cane. The reason for this is some parameters such as color, which are 

significantly affecting spectral signatures in UV region hide the valuable information 

required to make regression or classification analysis.   

 

 

Figure 3.2. Spectral data of all 25 sugar beet and cane samples without preprocessing 
from 200nm to 340nm. 

 

Following the elution of brown color sugar samples, the spectra were reinvestigated. 

As can be seen from (Figure 3.2), there were still some outliers, and these were the 

finely powdered sugars like ‘icing sugar’.  During the production of powder sugars, 

different ingredients are added for anticaking purposes, which may cause blurry 

sugar solutions (Hollenbach et al., 1982). The presence of starch makes the solution 

turbid and even after waiting a day for starch to precipitate, results were not 
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promising for most of the cases. Only two powdered sugars could be kept in the 

experiment dataset which gave reasonable absorbance values after precipitation. 

 

  

Figure 3.3. Wavelength vs absorbance after outliers were excluded. 

 

Collected raw data from spectrometer after outliers were excluded is given in Figure 

3.3. At first, it was expected to have differences in NIR region (800-1400) of the 

spectra, since there were two significant absorption bands that could be observed in 

those areas which belonged to water (Palmer & Williams, 1974). First one of those 

water absorption peaks was around 980 nm and the second one was around 1200 nm. 

Initially it was thought from a theoretical point that there could be different 

processing step and strategy while extracting and purifying sucrose molecules from 

their sources. Those processes might have caused impurities or some molecular level 

changes that could interact with water and then would change water bands in NIR 

Powdered Sugars 
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region so that it would be possible to obtain those spectral signature diversities. 

However, results showed that there was an observanle difference in only UV region 

(220-340) not in NIR, which can be easily seen in (Figure 3.4).  

  

Figure 3.4. Wavelength vs absorbance data of collected sugar samples between 220 
nm to 340 nm. 

 

The reason behind that could be the presence of impurities, which can be present in 

the raw material or mixed during different processing steps Since chemically both 

cane and beet sugar are quite indifferentiable, both being sucrose with same 

molecular structure, minor impurities could be a good differentiator under diverse 

spectroscopic methods (Lu et al., 2017). 

 

Powdered Sugars 
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3.1.2 Unsupervised Methods 

3.1.2.1 Principle Component Analysis 

 

Figure 3.5. PCA score plot of cane and beet sugar. 

 

For qualitative analysis, first PCA was applied to the dataset to detect if any outliers 

were present and to see if any data clusters existed. PC1 and PC2 explained 98.4% 

of variance in the dataset which was considerably high. As can be seen from (Figure 

3.5) just plotting PC1 and PC2 gave an idea about the differences of cane and beet, 

regions, and brands. Samples collected from different countries and brands showed 

small data clusters without a specific pattern about their country. However, samples 

which belong to the same brand showed similar PC scores that can be observed in 

(Figure 3.5). It was expected since raw materials that were used for production of the 
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same brand were most likely undergo similar processing steps with similar 

equipment and the plants sources have been harvested from geographically close 

regions. Each could be a parameter affecting the spectral signatures of samples with 

same brands. Short distance between the data points for same brand samples also 

showed that sampling process was done effectively, since otherwise some large 

deviations would be observed. 

 

 

Figure 3.6. PCA score plot of cane and beet sugar (powders excluded). 

 

Another outcome of plotting a PC score graph was the easy detection of powdered 

sugars. They were separated from crystalline samples significantly even for the same 

origins (beet & cane). As stated earlier powdered sugars caused spectral shifts 

because of the additives present for anticaking purposes. Results showed that for 
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powdered sugars when included in the same dataset with crystal sugars, separation 

by using chemometric methods was still possible (Figure 3.5). 

 

This outcome is of promising since with UV absorbance values one can detect the 

presence of impurities or foreign materials added during productions steps. On the 

other hand, if the goal is beet or can differentiation of it is also a challenge because 

if contamination level is high, it can also mask the differences caused by sugar source 

and then separation by plant type is compromised. It is a problem than can be solved 

by some preprocessing; filtering, decoloring etc. to remove impurities that effect the 

UV absorbance values significantly. Here in (Figure 3.6) after exclusion of powdered 

samples another PCA was applied and the distance between the clusters of beet and 

cane samples became more descriptive. 

 

Figure 3.7. PCA loading plot of cane and beet sugar. 
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PCA loading plots explain the level of importance of the variables to PC scores. For 

this study, loadings are basically linear combination of wavelengths represented by 

different principal components (Bro & Smilde, 2014). Here in (Figure 3.7) it is clear 

that for PC1, the most important wavelengths start at 200nm and as wavelength 

increases loadings decrease. Findings in the raw spectra were also supported with 

the loading graphs. PC2 on the other hand gave high loadings around 230 nm, which 

was similar to PC1. Both principal components was helpful to differentiate sugar 

brands. PC3 was not included since the goal of this study was fulfilled with PC1 and 

PC2. 
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3.1.2.2 Hierarchical Clustering 

 

Figure 3.8. HCA clusters of beet and cane sugars. 
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Hierarchical clustering was also applied to the whole dataset as an unsupervised 

method. From (Figure 3.8), it can be seen that a good separation was obtained from 

HCA, as the number of classes started to decrease only after their distance were so 

small, indicating high similarity. However, with HCA some of the beet and cane 

sugars were found in the same clusters meaning it was not as successful as 

dimensionality reduction approaches like PCA. Moreover, it was perfect for 

separating the powdered sugar samples confirming that when it comes to detect high 

differences such as additives or contaminations, HCA can be suggested. 

 

3.1.3 Supervised Methods 

In this part of the study, different chemometric approaches were tested such as 

CART, LDA, SIMCA and KNN.  
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3.1.3.1 Linear Discriminant Analysis 

 

 

Figure 3.9. Linear discriminant analysis between beet and cane using score values of 
first two PCs. 

 

As the first approach, LDA was selected, since it is one of the simplest chemometric 

methods that could be applied to a multivariate dataset. As the name implies, it works 

with a linear approach. If it is applied with two variables as in this case, it is quite 

intuitive to make comments on the classification. In (Figure 3.9) it was quite clear 

that by just drawing a linear line between cane and beet samples, it was possible to 

obtain a differentiation between groups of sugars. However, it has some challenges, 

since LDA cannot be applied for datasets, which have a greater number of variables 

than the sample number. Thus, in this study first it was applied by using score values 
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of the first 2 PCs as variables as stated by other researchers (de Luca et al., 2012) . 

Then, it was applied for 5 selected wavelengths which were 230 nm, 250nm, 255nm, 

270nm and 320nm to see if it could easily be applied in industry. Since if one can 

build a system with less variables, in this case few wavelengths, equipment costs 

decrease significantly, and model becomes more applicable for industrial purposes. 

The sensitivity and specificity values were both 1 for both variable selection 

approaches, meaning all samples were classified correctly. Also results for both 

whole dataset cross validation and separate train-test sample selection were same, 

and the algorithm correctly differentiated the samples. 

 

LDA were selected over quadratic discriminant analysis (QDA) because if difference 

between class covariance matrices was small, LDA performed often better when 

compared with QDA since low number of estimates were calculated (Wu et al., 

1996). In this study they were all sucrose samples hence variances between classes 

were expected to be small. 
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3.1.3.2 Classification and Regression Trees (CART) 

 

 

 

Figure 3.10. Classification nodes of CART analysis (V1 = PC1 & V2 = PC2). 

 

Here in (Figure 3.10) the binary selection of a structural mapping is shown. The first 

two score values of PCA are used and the algorithm decides a threshold that can 

separate between two groups and continues in that way. For our dataset, by using 

only two separation nodes, all 124 samples were classified correct with 5-fold cross-

validation. 2 means beet and 1 means cane sugar. 
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Figure 3.11. Class boundaries of classification tree. 

 

Here in (Figure 3.11) with two differentiation nodes (PC 1 and PC 2) projected to 

the x-y plane and all samples were differentiated with respect to their sources. PC1 

was successful on differentiating powdered samples with the crystal ones. Both PC 

1 and PC 2 was quite beneficiary to separate beet sugar from cane. 

 

CART was also tested including all wavelength variables without applying PCA by 

5-fold cross validation and results are shown in (Table 5) and (Table 6). 
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 Table 5. Classification measures for whole dataset. 

 Sensitivity Specificity Precision Error Rate Accuracy 

Training      

cane 1.00 0.99 0.98       0.01 

      0.01 

     0.99 

     0.99 beet 0.99 1.00 1.00 

5-fold CV      

cane 0.98 0.97 0.96       0.02              0.98 

      0.02              0.98 beet 0.97 0.98 0.99 

 

Table 6. Confusion matrix for whole dataset. 

real/predicted cane beet not assigned 

cane 49 1 0 

beet 2 72 0 

 

As can be seen from (Table 5) and (Table 6), two of the beet samples were classified 

as cane and one of the cane samples were classified as beet. There was a small error, 

and it was the only error for all trials in this study. 

 

After the application of CART to the whole data, samples were divided into two as 

test and train as mentioned above. The results for prediction on the external set was 

successful for all test samples. 

 

 

 



 
 

55 

3.1.3.3 K-Nearest Neighbors (KNN) 

 

 

 

Figure 3.12. K-nearest neighbors class boundaries with PCA 2 components. 

 

In (Figure 3.12), another classification method was presented which classified 

samples according to the distances (Wu & Massart, 1997). Euclidean distance was 

the most commonly used similarity approach used for KNN. However, in this 

research, it was not preferred since Euclidean distance could cause some distortions 

when there are correlated variables. Highly correlated variables could be found in 

the techniques such as optical spectroscopy with high spectral resolution (Massart, 

1988). Because of the covariance problem, Mahalanobis distance was used, since 

this approach can cope with correlated variables in the objects found in class. 
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Nevertheless, it cannot be used with the whole wavelength interval, since KNN with 

Mahalanobis distance only works if number of variables is less than number of 

samples, otherwise distance cannot be calculated because of the singularity of the 

covariance matrix (Wu & Massart, 1997). To solve the high number of variables 

problem, 15 wavelengths were manually selected from 280-294 nm, which gave the 

highest classification performance for separate test sets. Again, two different 

evaluation techniques were tested, and all samples were correctly classified for CV, 

and separate train dataset. When it comes to separate test samples, results were 

successful, but 3 misclassifications were observed. Performance measures can be 

seen in (Table 7) and (Table 8). 

 

Table 7. Classification measures for separate test group. 

 Sensitivity Specificity Precision Error Rate Accuracy 

Training      

cane 1.00 1.00 1.00       0 

      0 

     1 

     1 beet 1.00 1.00 1.00 

Test      

cane 1 0.90 0.77       0.07              0.92 

      0.07              0.92 beet 0.90 1 1 

 

Table 8. Confusion matrix for test samples. 

real/predicted cane beet  

cane 10 0  

beet 3 26  

 

 

Also, using PCA with the KNN can solve both collinearity and high number 

variables problems by reducing the number of dimensions. In this part, first PCA 
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was applied to the whole dataset in (Figure 3.12) and then first two score values were 

used as variables for KNN classification. After applying KNN with 5-fold CV and 

train and test sample separation, all samples were identified correctly for all sample 

sets. These results showed that, some models can work with conditional 

requirements in the dataset, such as number of variables should be lower than sample 

number. Even for those methods, successful results were obtained after applying 

different combinations of chemometric methods. 

 

3.1.3.4 Soft Independent Modelling of Class Analogy (SIMCA) 

 

Figure 3.13. Simca class boundaries (one PCA on the whole dataset).  
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As mentioned in Chapter 2, there are two different ways of applying PCA. SIMCA 

operates well even with high number of variables. The reason for that is, SIMCA 

algorithm applies PCA to the groups separately, thus provides a dimensionality 

reduction. All samples were classified correctly with specificity and sensitivity of 1. 

However, for easy representation of data in (Figure 3.13) PCA model was applied 

for whole dataset and then those PCs operated with SIMCA gave also a successful 

classification. (Figure 3.13), belongs to all dataset without sample separation as test 

and train and performance of this model is calculated with 5-fold cross validation. 

 

 

Figure 3.14. Class distances of the model. 
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sample has a possibility to be assigned as a member of both classes. Those results 

are also complementary with the findings after PCA model was applied. 

 

 

Figure 3.15. Discriminating power (classification power). 

 

Classification power of SIMCA was also complementary with PCA loadings. As can 

be seen from (Figure 3.15), UV wavelengths have higher discrimination ability when 

compared with visible and NIR regions. 

 

After applying SIMCA to the whole dataset, samples were also divided into two as 

train and test and results. All samples were classified correctly for both test and 

training sets. Thus, by applying SIMCA for two different approaches, a successful 

classification was achieved. 
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3.2 Quantification of Beet and Cane Sugar 

3.2.1 Raw Spectra 

 

Figure 3.16. Raw spectra of binary beet and cane sugar mixture. 

 

In the regression part of the study, selected wavelength interval was between 200-

600 nm, since spectral differences in NIR region were not observable as mentioned. 

Also, in this part it was observed that after 390 nm which is the end of UV region 

there were not observable differences compared to shorter wavelength regions. 

(Figure 3.16) belongs to raw spectra of binary mixture. 
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Figure 3.17. Wavelength limited raw spectra of binary beet and cane sugar mixture. 

 

From the (Figure 3.17), it is quite clear that around 270 nm there is a band which 

was observed also in classification measurements. On the other side around 220 nm, 

spectral signatures differ in an observable manner. Quantification part of the study 

was conducted by considering the stated differences with spectral preprocessing and 

wavelength selection methods. 
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3.2.2 Principal Component Analysis (PCA) 

 

Figure 3.18. Concentration vs score in first component of PCA analysis figure. 

 

A PCA analysis can be performed for a regression problem to see how parameters 

affect the PC scores and to detect outliers (S. Wold et al., 2007). In (Figure 3.18) the 

first component was able to explain the variance by 99.8%. This means almost all 

the variance can be explained by using only one component. And it is also quite clear 

there is an inverse correlation between concentration and score of the first 

component.  

 

By applying PCA, also outlier detection is possible. In (Figure 3.18) ‘black circled’ 
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an outlier analysis. However, in this case since sample number is limited and 

deviations are not relatively high all samples were decided to be kept for further 

chemometric analysis. It is important to highlight that, removing samples from 

dataset could cause overfitting problems and might decrease the robustness of model. 

 

 

Figure 3.19. Loading graph of first principal component.  

 

From Figure 3.19 as it was expected from the raw spectra, contributions of UV 

wavelengths to the first principal component, which explained the 99.8% of the 

variance in whole dataset are the highest. In following sections some manual 
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3.2.3 PLS Regression 

 

Figure 3.20. PLSR prediction vs concentration graph (5-fold CV unprocessed data). 

 

At first, no preprocessing was performed and only 5-fold cross validation was 

applied to the whole dataset without any data treatment to see the initial results. From 

Figure 3.20, it was observed that fit was successful with regression measures; 0.968, 

5.433, 5.712 which were R2, RMSECV, RPD respectively. When comparing results 

with other studies RPD is more reliable since it changes with standard deviation. If 

RPD is higher than 3, it is generally accepted that the model is successful.  

 

Following the cross validation for all samples, 6 samples were assigned as test and 

15 were to train and RMSEC, RMSEP and RPD were calculated as 4.191, 6.455, 

4.809 respectively. Even if the results were promising, difference between RMSEC 
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and RMSEP should be low for a good regression model. For that reason, data 

preprocessing such as Savitsky Golay (SG) and first derivative was applied to the 

dataset with wavelength selection to enhance the model quality. Also, other methods 

of preprocessing such as standard normal variate (SNV), normalization, mean 

centering, second derivative (SD) and Gaussian smoothing were tested but best 

outcomes were obtained with the mentioned methods, thus their results were 

discussed. 

 

Application of SG (5 window, second polynomial order) with the first derivative 

smooths the data and removes baseline effects. Scattering of light might be problem 

while making spectral measurements that can deviate the results however, with 

preprocessing methods effects of such deviations could be removed. Results were 

2.155, 3.192 and 9.724 for RMSEC, RMSEP and RPD respectively. With 

preprocessing, errors were decreased and RPD was increased significantly, also 

difference between RMSEC and RMSEP became smaller. 

 

After applying preprocessing, wavelength selection could be a good option since 

wavelengths which are not related with the target outcome can cause misevaluations. 

After selection of the wavelengths between 200-300 nm results were 2.834, 2.225 

and 13.941 for RMSEC, RMSEP and RPD respectively. The difference between 

RMSEC, RMSEP were decreased and RPD was increased which means 

preprocessing and wavelength selection strategies were increased the model 

capabilities. The R2 values of above-mentioned models are given in (Table 9). 
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3.2.4 Searching Combination Moving Window Interval PLSR 

When it comes to wavelength selection methods, scmwiPLS is one of the novel ones. 

After selecting window size, which is number of variables in one window, algorithm 

tries different number of windows for different variables and selects the one which 

gives the less RMSEP. Number of windows selection can be seen on (Figure 3.21). 

It is a very successful automized method since one cannot try all combinations by 

hand and assess all the results in such short times. To apply method, first a PLS 

without any wavelength selection was applied, to see latent structure number, which 

gives minimum RMSECV and then window length was selected by adding one to the 

component number. The reason was after several trials from different datasets, this 

application gave best results. 

 

 

Figure 3.21. Number of windows vs RMSEP. 
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 Figure 3.22. ScwmiPLS results without any preprocessing. 

 

As can be seen from (Figure 3.22) PLS was successful in terms of predicting the test 

samples with RMSEP of 0.332 and with the highest RPD of 93.433 and with RMSEC 

of 1.936. This model gave the highest results so far. However, there was a challenge 

with these high-performance models. One of them was since wavelengths were 

selected for the lowest RMSEP, the difference between RMSEC vs RMSEP could be 

relatively high which was also the case in this model. This difference can decrease 

robustness of models, for this reason, scwmiPLS was not selected as the best option 

in current work. 
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Figure 3.23. ScmwiPLS concentration vs prediction results with SG and First 
Derivative. 

 

Results obtained from ScmwiPLS can be enhanced with the preprocessing methods. 

From (Figure 3.23) it was quite clear that the best fit was obtained with preprocessing 

methods. Evaluation results were 0.072, 0.308 and 100.714 for RMSEC, RMSEP and 

RPD, respectively. With preprocessing methods, difference between calibration set 

and prediction set decreased with even higher RPD. However, results obtained from 

ScmwiPLS could be evaluated as overfitting since possible deviations from other 

parameters in such perfectly fitted models are most likely ignored. In chemometrics 

such overfitted models should always be considered and robustness of models is 

more important for future applications when compared with high success for a 

specific dataset. 
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3.2.5 Linear Regression 

  

Figure 3.24. Linear regression analysis without any preprocessing, whole dataset. 

 

Linear regression is a method which works well under well-posed datasets which 

have less variables than sample amount and works well if multicollinearity does not 

exist in the dataset. However, spectroscopic data with whole wavelength interval was 

not very convenient for the above conditions. In (Figure 3.24) ridge regularization 

was applied to solve ill-posed data problem and results were obtained. RMSECV with 

5-fold CV for whole dataset was 6.318 and RPD was 4.909.  

 

Results were very similar but less successful than the PLSR-CV model which had 

entire wavelength ranges (200-700 nm) and no pretreatments. However, there was a 

huge prediction error shown in (Figure 3.24) for sample which was circled in black, 
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and the reason is most probably the spectral noise and scattering affects. This 

problem could have been solved by applying spectral preprocessing methods as 

described in the following sections.  

 

Samples were then split into two as test and train datasets and other data analysis 

strategies were applied. When data were split, evaluation results were 1.567, 3.784 

and 8.197 for RMSEC, RMSEP and RPD respectively. Difference between 

calibration and prediction datasets was high thus further preprocessing methods were 

also tested. First SG with first derivative was tried and the results were better in terms 

of consistency, having 2.956, 3.026 and 10.251 for RMSEC, RMSEP and RPD 

respectively. As expected by applying preprocessing, stability between test and train 

datasets can be achieved since noise can be excluded from the spectrum with 

preprocessing methods.  
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Figure 3.25. Linear regression analysis with SG and FD for 6 selected wavelengths. 

 

Finally, after applying the preprocessing methods, 6 wavelengths were selected from 

UV spectrum for easy application of the method, which were 220, 221, 222, 223, 

224, 225 (determined by trial and error). The numbers were 3.382, 3.279 and 9.460 

for RMSEC, RMSEP and RPD respectively. Concentration vs predicted result can be 

seen in (Figure 3.25). Results for narrow wavelength interval seemed promising for 

the industrial applications. 
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CHAPTER 4  

4 CONCLUSION 

Sucrose is mainly produced from either sugar beet or cane. Due to geographical and 

climatic conditions, some countries can only produce sucrose from one of these 

sources. Some government policies are restricting the use of  cane sugar because of 

strategic reasons. Also, sensory properties of sucrose produced from sugar beet or 

sugar cane can be different. Due to these reasons, differentiation of the plant origin 

of sucrose becomes important. 

 

Since many years, methods such as IRMS, HR-NMR and sensory analysis are being 

used to differentiate the source of the sucrose. These methods focused on differences 

between isotropic ratios, sensory properties, impurities etc... On the other hand, 

sucrose, which is obtained from either source are identical in chemical perspective. 

Due to this reason, with conventional methods such as HPLC, it is not likely to 

differentiate sources.  

Current work focuses on developing a new method that requires low maintenance 

and operating costs, less expertise, minimal sample preparation with user friendly 

interface when compared with previous techniques.  

 

Optical spectroscopy with chemometric methods, provided quite promising results 

for many studies in differentiating origins of food materials. However, for our 

knowledge, UV spectroscopy was not studied to authenticate sucrose sources in the 

literature, which made current work crucial. Results of this thesis showed that UV 

region of the electromagnetic spectrum was highly sensitive for impurities that could 

be used to diversify sources of sugar.  
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As a conclusion, all supervised classification methods, including SIMCA, LDA, 

KNN and CART, showed high performance to authenticate the source of the sucrose. 

In addition to that, LDA with only 5 selected wavelengths provided 100% 

classification with the simplest interpretation. On the other hand, for regression 

analysis, MLR with Savitsky Golay (SG) and first derivative preprocessings, gave 

the most stable results of RMSEC, RMSEP by being close to each other 2.956, 3.026 

respectively. Moreover, MLR also provided high RPD value of 10.251. The obtained 

results seem promising that the plant source of sucrose can be differentiated by using 

UV spectra and chemometric methods.  
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APPENDICES 

A. Statistical Tables 

Table 10. Classification measures of CART Analysis 

 Sensitivity Specificity Precision Error Rate Accuracy 

Training      

cane 1.00 0.99 0.98       0.01 

      0.01 

     0.99 

     0.99 beet 0.99 1.00 1.00 

5-fold CV      

cane 0.98 0.97 0.96       0.02              0.98 

      0.02              0.98 beet 0.97 0.98 0.99 

 

real/predicted cane beet not assigned 

cane 49 1 0 

beet 2 72 0 
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Table 11. Classification measures of KNN 

 Sensitivity Specificity Precision Error Rate Accuracy 

Training      

cane 1.00 1.00 1.00       0 

      0 

     1 

     1 beet 1.00 1.00 1.00 

Test      

cane 1 0.90 0.77       0.07              0.92 

      0.07              0.92 beet 0.90 1 1 

 

real/predicted cane beet  

cane 10 0  

beet 3 26  
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B. Matlab Codes 

PCA Matlab Code (Background) 

 

function [coeff, score, latent, tsquared, explained, mu] = 
pca(x,varargin) 

%PCA Principal Component Analysis (PCA) on raw data. 

%   COEFF = PCA(X) returns the principal component coefficients for 
the N 

%   by P data matrix X. Rows of X correspond to observations and 
columns to 

%   variables. Each column of COEFF contains coefficients for one 
principal 

%   component. The columns are in descending order in terms of 
component 

%   variance (LATENT). PCA, by default, centers the data and uses 
the 

%   singular value decomposition algorithm. For the non-default 
options, 

%   use the name/value pair arguments. 

% 

%   [COEFF, SCORE] = PCA(X) returns the principal component score, 
which is 

%   the representation of X in the principal component space. Rows 
of SCORE 

%   correspond to observations, columns to components. The centered 
data 

%   can be reconstructed by SCORE*COEFF'. 

% 

%   [COEFF, SCORE, LATENT] = PCA(X) returns the principal component 

%   variances, i.e., the eigenvalues of the covariance matrix of X, 
in 

%   LATENT. 

% 

%   [COEFF, SCORE, LATENT, TSQUARED] = PCA(X) returns Hotelling's 
T-squared 
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%   statistic for each observation in X. PCA uses all principal 
components 

%   to compute the TSQUARED (computes in the full space) even when 
fewer 

%   components are requested (see the 'NumComponents' option below). 
For 

%   TSQUARED in the reduced space, use MAHAL(SCORE,SCORE). 

% 

%   [COEFF, SCORE, LATENT, TSQUARED, EXPLAINED] = PCA(X) returns a 
vector 

%   containing the percentage of the total variance explained by 
each 

%   principal component. 

% 

%   [COEFF, SCORE, LATENT, TSQUARED, EXPLAINED, MU] = PCA(X) returns 
the 

%   estimated mean, MU, when 'Centered' is set to true; and all 
zeros when 

%   set to false. 

% 

%   [...] = PCA(..., 'PARAM1',val1, 'PARAM2',val2, ...) specifies 
optional 

%   parameter name/value pairs to control the computation and 
handling of 

%   special data types. Parameters are: 

% 

%    'Algorithm' - Algorithm that PCA uses to perform the principal 

%                  component analysis. Choices are: 

%        'svd'   - Singular Value Decomposition of X (the default). 

%        'eig'   - Eigenvalue Decomposition of the covariance matrix. 
It 

%                  is faster than SVD when N is greater than P, but 
less 

%                  accurate because the condition number of the 
covariance 

%                  is the square of the condition number of X. 
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%        'als'   - Alternating Least Squares (ALS) algorithm which 
finds 

%                  the best rank-K approximation by factoring a X 
into a 

%                  N-by-K left factor matrix and a P-by-K right 
factor 

%                  matrix, where K is the number of principal 
components. 

%                  The factorization uses an iterative method 
starting with 

%                  random initial values. ALS algorithm is designed 
to 

%                  better handle missing values. It deals with 
missing 

%                  values without listwise deletion (see {'Rows', 

%                  'complete'}). 

% 

%     'Centered' - Indicator for centering the columns of X. Choices 
are: 

%         true   - The default. PCA centers X by subtracting off 
column 

%                  means before computing SVD or EIG. If X contains 
NaN 

%                  missing values, NANMEAN is used to find the mean 
with 

%                  any data available. 

%         false  - PCA does not center the data. In this case, the 
original 

%                  data X can be reconstructed by X = SCORE*COEFF'. 

% 

%     'Economy'  - Indicator for economy size output, when D the 
degrees of 

%                  freedom is smaller than P. D, is equal to M-1, 
if data 

%                  is centered and M otherwise. M is the number of 
rows 

%                  without any NaNs if you use 'Rows', 'complete'; 
or the 
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%                  number of rows without any NaNs in the column 
pair that 

%                  has the maximum number of rows without NaNs if 
you use 

%                  'Rows', 'pairwise'. When D < P, SCORE(:,D+1:P) 
and 

%                  LATENT(D+1:P) are necessarily zero, and the 
columns of 

%                  COEFF(:,D+1:P) define directions that are 
orthogonal to 

%                  X. Choices are: 

%         true   - This is the default. PCA returns only the first 
D 

%                  elements of LATENT and the corresponding columns 
of 

%                  COEFF and SCORE. This can be significantly faster 
when P 

%                  is much larger than D. NOTE: PCA always returns 
economy 

%                  size outputs if 'als' algorithm is specifed. 

%         false  - PCA returns all elements of LATENT. Columns of 
COEFF and 

%                  SCORE corresponding to zero elements in LATENT 
are 

%                  zeros. 

% 

%     'NumComponents' - The number of components desired, specified 
as a 

%                  scalar integer K satisfying 0 < K <= P. When 
specified, 

%                  PCA returns the first K columns of COEFF and 
SCORE. 

% 

%     'Rows'     - Action to take when the data matrix X contains 
NaN 

%                  values. If 'Algorithm' option is set to 'als, 
this 

%                  option is ignored as ALS algorithm deals with 
missing 
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%                  values without removing them. Choices are: 

%         'complete' - The default action. Observations with NaN 
values 

%                      are removed before calculation. Rows of NaNs 
are 

%                      inserted back into SCORE at the corresponding 

%                      location. 

%         'pairwise' - If specified, PCA switches 'Algorithm' to 
'eig'. 

%                      This option only applies when 'eig' method 
is used. 

%                      The (I,J) element of the covariance matrix 
is 

%                      computed using rows with no NaN values in 
columns I 

%                      or J of X. Please note that the resulting 
covariance 

%                      matrix may not be positive definite. In that 
case, 

%                      PCA terminates with an error message. 

%         'all'      - X is expected to have no missing values. All 
data 

%                      are used, and execution will be terminated 
if NaN is 

%                      found. 

% 

%     'Weights'  - Observation weights, a vector of length N 
containing all 

%                  positive elements. 

% 

%     'VariableWeights' - Variable weights. Choices are: 

%          - a vector of length P containing all positive elements. 

%          - the string 'variance'. The variable weights are the 
inverse of 

%            sample variance. If 'Centered' is set true at the same 
time, 

%            the data matrix X is centered and standardized. In this 
case, 
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%            PCA returns the principal components based on the 
correlation 

%            matrix. 

% 

%   The following parameter name/value pairs specify additional 
options 

%   when alternating least squares ('als') algorithm is used. 

% 

%      'Coeff0'  - Initial value for COEFF, a P-by-K matrix. The 
default is 

%                  a random matrix. 

% 

%      'Score0'  - Initial value for SCORE, a N-by-K matrix. The 
default is 

%                  a matrix of random values. 

% 

%      'Options' - An options structure as created by the STATSET 
function. 

%                  PCA uses the following fields: 

%          'Display' - Level of display output.  Choices are 'off' 
(the 

%                      default), 'final', and 'iter'. 

%          'MaxIter' - Maximum number of steps allowed. The default 
is 

%                      1000. Unlike in optimization settings, 
reaching 

%                      MaxIter is regarded as convergence. 

%           'TolFun' - Positive number giving the termination 
tolerance for 

%                      the cost function.  The default is 1e-6. 

%             'TolX' - Positive number giving the convergence 
threshold 

%                      for relative change in the elements of L and 
R. The 

%                      default is 1e-6. 

% 
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% 

%   Example: 

%       load hald; 

%       [coeff, score, latent, tsquared, explained] = 
pca(ingredients); 

% 

%   See also PPCA, PCACOV, PCARES, BIPLOT, BARTTEST, CANONCORR, 
FACTORAN, 

%   ROTATEFACTORS. 

 

% References: 

%   [1] Jolliffe, I.T. Principal Component Analysis, 2nd 
ed.,Springer,2002. 

%   [2] Krzanowski, W.J., Principles of Multivariate Analysis, Oxford 

%       University Press, 1988. 

%   [3] Seber, G.A.F., Multivariate Observations, Wiley, 1984. 

%   [4] Jackson, J.E., A User's Guide to Principal Components, Wiley, 
1988. 

%   [5] Sam Roweis, EM algorithms for PCA and SPCA, In Proceedings 
of the 

%       1997 conference on Advances in neural information processing 

%       systems 10 (NIPS '97), MIT Press, Cambridge, MA, USA, 626-
632,1998. 

%   [6] Alexander Ilin and Tapani Raiko. Practical Approaches to 
Principal 

%       Component Analysis in the Presence of Missing Values. J. 
Mach. 

%       Learn. Res. 11 (August 2010), 1957-2000, 2010. 

 

%   Copyright 2012-2020 The MathWorks, Inc. 

 

 

 

if nargin > 1 

    [varargin{:}] = convertStringsToChars(varargin{:}); 
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end 

 

[n, p] = size(x); 

internal.stats.checkSupportedNumeric('X',x,false,false,true,true); 
% complex is accepted here 

 

% Parse arguments and check if parameter/value pairs are valid 

paramNames = 
{'Algorithm','Centered','Economy','NumComponents','Rows',... 

    'Weights','VariableWeights','Coeff0','Score0','Options'}; 

defaults   = {'svd',       true,      true,    p,           'complete',... 

    ones(1,n,'like',x) ,ones(1,p,'like',x),        [],      [], 
statset('pca')}; 

 

[vAlgorithm, vCentered, vEconomy, vNumComponents, 
vRows,vWeights,... 

    vVariableWeights, c0, s0, opts, setFlag]... 

    = internal.stats.parseArgs(paramNames, defaults, varargin{:}); 

% Validate String value for  Algorithm value 

AlgorithmNames = {'svd','eig','als'}; 

vAlgorithm = 
internal.stats.getParamVal(vAlgorithm,AlgorithmNames,... 

    '''Algorithm'''); 

% Validate boolean value for 'Centered' option 

vCentered = internal.stats.parseOnOff(vCentered,'''Centered'''); 

% Validate boolean value for 'Economy' option 

vEconomy = internal.stats.parseOnOff(vEconomy,'''Economy'''); 

% Validate the number of components option 'NumComponents' 

if ~isempty(x) && ~internal.stats.isScalarInt(vNumComponents,1,p) 

    error(message('stats:pca:WrongNumComponents',p)); 

end 

% Validate value for 'Rows' option 

RowsNames = {'complete','pairwise','all'}; 

vRows = internal.stats.getParamVal(vRows,RowsNames,'''Rows'''); 
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switch vAlgorithm 

    case 'svd' 

        % Switch 'Algorithm' to 'eig' if 'Rows' set to 'pairwise' 

        if strcmp(vRows,'pairwise') 

            if setFlag.Algorithm 

                warning(message('stats:pca:NoPairwiseSVD')); 

            end 

            vAlgorithm = 'eig'; 

        end 

        % Switch algorithm to 'als' if user specify 'Coeff0' and 
'Score0'. 

        if setFlag.Coeff0 || setFlag.Score0 

            vAlgorithm = 'als'; 

        end 

    case 'als' 

        % If 'als' is chosen, force PCA to use ALS and to ignore the 

        % Rows' option 

        if setFlag.Rows 

            warning(message('stats:pca:NoALSRows')); 

        end 

end 

 

% Validate Weights Vectors 

if isvector(vWeights) && isequal(numel(vWeights),n) 

    vWeights = reshape(vWeights,1,n); % make sure it is a row vector 

else 

    error(message('stats:pca:WrongObsWeights', n)); 

end 

 

if internal.stats.isString(vVariableWeights) 

    WeightsNames = {'variance'}; 

    internal.stats.getParamVal(vVariableWeights,WeightsNames,... 
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        '''VariableWeights'''); 

    vVariableWeights = 
1./classreg.learning.internal.wnanvar(x,vWeights,1); 

elseif isnumeric(vVariableWeights) && isvector(vVariableWeights)... 

        && (isequal(numel(vVariableWeights), p)) 

    vVariableWeights = reshape(vVariableWeights,1,p); 

else 

    error(message('stats:pca:WrongVarWeights', p)); 

end 

 

if any(vWeights <= 0) || any(vVariableWeights <= 0) 

    error(message('stats:pca:NonPositiveWeights')); 

end 

% end of checking input arguments 

 

 

% Handling special empty case 

if isempty(x) 

    pOrZero = ~vEconomy * p; 

    coeff = zeros(p, pOrZero, "like", x); 

    coeff(1:p+1:end) = 1; 

    score = zeros(n, pOrZero, "like", x); 

    latent = zeros(pOrZero, 1, "like", x); 

    tsquared = zeros(n, 1, "like", x); 

    explained = zeros(0, "like", x); 

    mu = zeros(0, "like", x); 

    return; 

end 

 

nanIdx = isnan(x); 

numNaN = sum(nanIdx, 2); % number of NaNs in each row 

wasNaN = any(numNaN,2); % Rows that contain NaN 
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% Handling special cases where X is all NaNs: 

if all(nanIdx(:)) 

    coeff = NaN("like",x); 

    score = NaN("like",x); 

    latent = NaN("like",x); 

    tsquared = NaN("like",x); 

    explained = NaN("like",x); 

    mu = NaN("like",x); 

    return; 

end 

% Handling special scalar case; 

if isscalar(x) 

    coeff = ones("like",x); 

    notCentered = cast(~vCentered,"like",x); 

    score = notCentered*x; 

    latent = notCentered*x^2; 

    tsquared = notCentered; 

    explained = 100*coeff; 

    mu = vCentered*x; 

    return; 

end 

 

if strcmp(vRows,'all') && (~strcmp(vAlgorithm,'als')) 

    if any(wasNaN) 

        error(message('stats:pca:RowsAll')); 

    else 

        vRows = 'complete'; 

    end 

end 

 

if strcmp(vRows,'complete') 



 
 

99 

    % Degrees of freedom (DOF) is n-1 if centered and n if not 
centered, 

    % where n is the numer of rows without any NaN element. 

    DOF = max(0,n-vCentered-sum(wasNaN)); 

elseif strcmp(vRows,'pairwise') 

    % DOF is the maximum number of element pairs without NaNs 

    notNaN = double(~nanIdx); 

    nanC = notNaN'*notNaN; 

    nanC = nanC.*(~eye(p)); 

    DOF = max(nanC(:)); 

    DOF = DOF-vCentered; 

else 

    DOF = max(0,n-vCentered); 

end 

 

if vCentered 

    % Weighted sample mean: 

    mu = classreg.learning.internal.wnanmean(x, vWeights); 

else 

    mu = zeros(1,p,'like',x); 

end 

 

% Compute by EIG if no weights are given 

switch vAlgorithm 

    case 'eig' 

        % Center the data if 'Centered' is true. 

        if vCentered 

            x = x - mu; 

        end 

         

        % Use EIG to compute. 

        [coeff, eigValues] = localEIG(x, vCentered, vRows, 
vWeights,... 
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            vVariableWeights); 

         

        % When 'Economy' value is true, nothing corresponding to 
zero 

        % eigenvalues should be returned. 

        if (DOF<p) 

            if vEconomy 

                coeff(:, DOF+1:p) = []; 

                eigValues(DOF+1:p, :) = []; 

            else % make sure they are zeros. 

                eigValues(DOF+1:p, :) = 0; 

            end 

        end 

         

        % Force small negative eigenvalues to zero because of 
rounding error 

        
eigValues((eigValues<0)&(abs(eigValues)<(eps(eigValues(1))*length(
eigValues)))) = 0; 

         

        % Check if eigvalues are all positive 

        if any(eigValues<0) 

            
error(message('stats:pca:CovNotPositiveSemiDefinite')); 

        end 

         

        if nargout > 1 

            score = x/coeff'; 

            latent = eigValues; % Output Eigenvalues 

            if nargout > 3 

                tsquared = localTSquared(score, latent, n, p); 

            end 

        end 
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    case 'svd' % Use SVD to compute 

        % Center the data if 'Centered' is true. 

        if vCentered 

            x = x - mu; 

        end 

         

        [U,sigma, coeff, wasNaN] = localSVD(x, n,... 

            vEconomy, vWeights, vVariableWeights); 

        if nargout > 1 

            score =  U.*(sigma'); 

            latent = sigma.^2./DOF; 

            if nargout > 3 

                tsquared = localTSquared(score,latent,DOF,p); 

            end 

            %Insert NaNs back 

            if any(wasNaN) 

                score = internal.stats.insertnan(wasNaN, score); 

                if nargout >3 

                    tsquared = 
internal.stats.insertnan(wasNaN,tsquared); 

                end 

            end 

        end 

         

        if DOF < p 

            % When 'Economy' value is true, nothing corresponding 
to zero 

            % eigenvalues should be returned. 

            if vEconomy 

                coeff(:, DOF+1:end) = []; 

                if nargout > 1 

                    score(:, DOF+1:end)=[]; 

                    latent(DOF+1:end, :)=[]; 
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                end 

            elseif nargout > 1 

                % otherwise, eigenvalues and corresponding outputs 
need to pad 

                % zeros because svd(x,0) does not return columns of 
U corresponding 

                % to components of (DOF+1):p. 

                score(:, DOF+1:p) = 0; 

                latent(DOF+1:p, 1) = 0; 

            end 

        end 

         

    case 'als' % Alternating Least Square Algorithm 

         

        vNumComponents = min([vNumComponents,n-vCentered,p]);  % ALS 
always return economy sized outputs 

         

        if isempty(s0) 

            s0 = randn(n,vNumComponents,'like',x); 

        elseif ~isequal(size(s0),[n,vNumComponents])|| 
any(isnan(s0(:))) 

            
error(message('stats:pca:BadInitialValues','Score0',n,vNumComponen
ts)); 

        end 

        if isempty(c0) 

            c0 = randn(p,vNumComponents,'like',x); 

        elseif ~isequal(size(c0),[p,vNumComponents]) || 
any(isnan(c0(:))) 

            
error(message('stats:pca:BadInitialValues','Coeff0',p,vNumComponen
ts)); 

        end 

         

        
[score,coeff,mu,latent]=alsmf(x,vNumComponents,'L0',s0,'R0',c0,... 
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'Weights',vWeights,'VariableWeights',vVariableWeights,... 

            
'Orthonormal',true,'Centered',vCentered,'Options',opts); 

         

        if nargout > 3 

            % T-squared values are in reduced space. 

            tsquared = localTSquared(score, latent,n-vCentered, 
vNumComponents); 

        end 

end % end of switch vAlgorithm 

 

% Calcuate the percentage of the total variance explained by each 
principal 

% component. 

if nargout > 4 

    explained = 100*latent/sum(latent); 

end 

 

% Output only the first k principal components 

if (vNumComponents<DOF) 

    coeff(:, vNumComponents+1:end) = []; 

    if nargout > 1 

        score(:, vNumComponents+1:end) = []; 

    end 

end 

 

 

% Enforce a sign convention on the coefficients -- the largest 
element in 

% each column will have a positive sign. 

[~,maxind] = max(abs(coeff), [], 1); 

[d1, d2] = size(coeff); 

colsign = sign(coeff(maxind + (0:d1:(d2-1)*d1))); 
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coeff = coeff.*colsign; 

if nargout > 1 

    score = score.*colsign; % scores = score 

end 

 

end % End of main function 

 

 

%----------------Subfucntions-------------------------------------
------- 

 

function [coeff, eigValues]=localEIG(x,vCentered, 
vRows,vWeights,... 

    vVariableWeights) 

% Compute by EIG. vRows are the options of handing NaN when compute 

% covariance matrix 

 

% Apply observation and variable weights 

OmegaSqrt = sqrt(vWeights); 

PhiSqrt = sqrt(vVariableWeights); 

x = x.*(OmegaSqrt'); 

x = x.*PhiSqrt; 

 

xCov = ncnancov(x, vRows, vCentered); 

 

[coeff, eigValueDiag] = eig(xCov); 

[eigValues, idx] = sort(diag(eigValueDiag), 'descend'); 

coeff = coeff(:, idx); 

 

coeff = coeff./(PhiSqrt'); 

end 
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function [U,sigma, coeff, wasNaN] = localSVD(x, n,..., 

    vEconomy, vWeights, vVariableWeights) 

% Compute by SVD. Weights are supplied by vWeights and 
vVariableWeights. 

 

% Remove NaNs missing data and record location 

[~,wasNaN,x] = internal.stats.removenan(x); 

if n==1  % special case because internal.stats.removenan treats all 
vectors as columns 

    wasNaN = wasNaN'; 

    x = x'; 

end 

 

% Apply observation and variable weights 

vWeights(wasNaN) = []; 

OmegaSqrt = sqrt(vWeights); 

PhiSqrt = sqrt(vVariableWeights); 

x = x.*(OmegaSqrt'); 

x = x.*PhiSqrt; 

 

if vEconomy 

    [U,sigma,coeff] = svd(x,'econ'); 

else 

    [U,sigma, coeff] = svd(x, 0); 

end 

 

U = U./(OmegaSqrt'); 

coeff = coeff./(PhiSqrt'); 

 

if n == 1     % sigma might have only 1 row 

    sigma = sigma(1); 

else 

    sigma = diag(sigma); 
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end 

end 

 

function tsquared = localTSquared(score, latent,DOF, p) 

% Subfunction to calulate the Hotelling's T-squared statistic. It 
is the 

% sum of squares of the standardized scores, i.e., Mahalanobis 
distances. 

% When X appears to have column rank < r, ignore components that are 

% orthogonal to the data. 

 

if isempty(score) 

    tsquared = score; 

    return; 

end 

 

r = min(DOF,p); % Max possible rank of x; 

if DOF > 1 

    q = sum(latent > max(DOF,p)*eps(latent(1))); 

    if q < r 

        warning(message('stats:pca:ColRankDefX', q)); 

    end 

else 

    q = 0; 

end 

standScores = score(:,1:q)./(sqrt(latent(1:q,:))'); 

tsquared = sum(standScores.^2, 2); 

end 

 

function c = ncnancov(x,Rows,centered) 

%   C = NCNANCOV(X) returns X'*X/N, where N is the number of 
observations 

%   after removing rows missing values. 
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% 

%   C = NCNANCOV(...,'pairwise') computes C(I,J) using rows with no 
NaN 

%   values in columns I or J.  The result may not be a positive 
definite 

%   matrix. C = NCNANCOV(...,'complete') is the default, and it 
omits rows 

%   with any NaN values, even if they are not in column I or J. 

% 

%   C = NCNANCOV(...,true), C is normalized by N-1 if data X is 
already 

%   centered. The default is false. 

 

if nargin <2 

    Rows = 'complete'; 

end 

 

d = 0; 

if nargin>2 

    d =  d + centered; 

end 

 

idxnan = isnan(x); 

 

[n, p] = size(x); 

 

 

if ~any(any(idxnan)) 

    c = x'*x/(n-d); 

elseif strcmp(Rows,'complete') 

    nanrows = any(idxnan,2); 

    xNotNaN = x((~nanrows),:); 

    denom = max(0, (size(xNotNaN,1)-d) ); 

    c = xNotNaN'*xNotNaN/denom; 
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elseif strcmp(Rows,'pairwise') 

    c = zeros(p,class(x)); 

    for i = 1:p 

        for j = 1:i 

            NonNaNRows = ~any(idxnan(:,[i, j]),2); 

            denom = max(0,(sum(NonNaNRows)-d)); 

            c(i,j) = x(NonNaNRows,i)'*x(NonNaNRows,j)/denom; 

        end 

    end 

    c = c + tril(c,-1)'; 

end 

end 

 

 

 

PCA Application 

 

clc; 

clear all; 

load BinMixData.mat 

A=DataBinMix % all spectrum 

P=ConcBinMix;%samples 

B=A;%without first column - wavelength 

% B=B'; %A has every example as column. In PCA A must have example 
as row 

[B_r,B_c]=size(B);%dimensions of A, number of rows and number of 
columns 

% Bc=B-ones(B_r,1)*mean(B);%normalization 

% Aa=Ac./(ones(A_r,1)*sum((Ac.^2)/A_r).^(1/2));%auto-scaling 

[coeff,score,latent,tsquared,explained,mu]=pca(B,'NumComponents',2
); 

Dis = cumsum(explained); 

figure(1); 
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plot(Dis(1:10,1),'ro-','LineWidth',2,'MarkerSize',5); 

xlabel('Number of component'); 

ylabel('Explained, %'); 

%%  

 

figure(1); 

plot(WavelenghtBinMix,B,'r'); 

%% 

figure(2); 

plot(score(1:end,1),score(1:end,2),'rs','LineWidth',2,'MarkerSize'
,10) 

xlabel('First principal component'); 

ylabel('Second principal component'); 

 

%%  

figure(3); 

plot(P,score(1:end,1),'r*','LineWidth',2,'MarkerSize',10); 

xlabel(' Concentration, % '); 

ylabel('Score in first principal component'); 

 

%%  

figure(4); 

 

plot(WavelenghtBinMix,coeff(:,1),'r','linewidth',2); 

 

xlabel('Wavelenght (nm)'); 

ylabel('Loadings'); 

 

 

PLS Matlab Code 

 

clear all; 
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clc; 

%PCA 

load BinMix6Test.mat; 

 

A=DataBinMix; 

M=ConcBinMix; 

%B=A(377:382,2:end);  

[B_r,B_c]=size(A); 

Bc=A-ones(B_r,1)*mean(A); 

[coeff,score,latent,tsquared,explained,mu]=pca(A,'NumComponents',5
); 

figure(); 

plot(M,score(1:end,1),'r*','LineWidth',3,'MarkerSize',5) 

ylabel('Score to PC1'); 

xlabel('concentration'); 

S=score(1:end,1); 

 

figure(); 

Dis = cumsum(explained); 

plot(Dis,'b*','LineWidth',3,'MarkerSize',5); 

axis([1 10 98.5 100]); 

ylabel('Total variance explained, %'); 

xlabel('Number of principal components'); 

 

%%  

 

%PLS 

X=TrainDataBinMix(:,1:401);%train 

Y=TrainDataBinMix(:,402);%train 

%X=X'; 

[n,p]=size(X); 

%X=X-ones(n,1)*mean(X); 



 
 

111 

[u,v]=size(Y); 

X1=TestDataBinMix(:,1:401);%test 

Y1=TestDataBinMix(:,402);%test 

%X1=X1'; 

[e,k]=size(X1); 

%X1=X1-ones(e,1)*mean(X1); 

[z,s]=size(Y1); 

 

for i=1:10 

[XL,YL,XS,YS,betaPLS,PLSPctVar,PLSmsep]=plsregress(X,Y,i); 

yfitPLS = [ones(n,1) X]*betaPLS; 

yfitPLS1 = [ones(e,1) X1]*betaPLS;  

RMSEPLS(i)=sqrt(sum((Y-yfitPLS).^2)/size(Y,1)); 

RMSEPLS1(i)=sqrt(sum((Y1-yfitPLS1).^2)/size(Y1,1)); 

end; 

figure(); 

plot(1:10,RMSEPLS1,'b+','LineWidth',5,'MarkerSize',2); 

ylabel('RMSEPLS test'); 

xlabel('Number of latent structures'); 

 

%%  

figure(); 

[XL,YL,XS,YS,betaPLS,PLSPctVar,PLSmsep]=plsregress(X,Y,8); 

yfitPLS = [ones(n,1) X]*betaPLS; 

yfitPLS1 = [ones(e,1) X1]*betaPLS;  

 

 

q=(yfitPLS-Y)./Y; 

w=(yfitPLS1-Y1)./Y1; 

plot(Y,q,'r^',Y1,w,'b*'); 

legend({'PLS train' 'PLS test'},'location','SE'); 

xlabel('Measured mass, g'); 
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ylabel('Difference between the predicted and measured mass'); 

 

%%  

 

plot(Y,yfitPLS,'b^',Y1,yfitPLS1,'r*'); 

xlabel('Measured mass, g'); 

ylabel('Predicted mass, g'); 

legend({'PLS train' 'PLS test' },'location','NW'); 

 

 

LDA Code 

 

%clear all;clc; 

 

%load SugarClassLDA  %two matrices output one for variables, one for 
species (vertical allignment) 

 

 

PC1 = PCscoresofBeetCane(:,1); 

PC2 = PCscoresofBeetCane(:,2); 

 

h1 = gscatter(PC1,PC2,AllType,'krb','ov^',[],'off'); 

 h1(1).LineWidth = 2; 

 h1(2).LineWidth = 2; 

 %h1(3).LineWidth = 2; 

 legend('Cane Sugar','Beet Sugar') %Change according to your data 

 hold on 

 X = [PC1,PC2]; 

 MdlLinear = fitcdiscr(X,AllType); 

 MdlLinear.ClassNames([1 2]) 

 K = MdlLinear.Coeffs(1,2).Const;   

 L = MdlLinear.Coeffs(1,2).Linear; 
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 f = @(x1,x2) K + L(1)*x1 + L(2)*x2; 

 h2 = fimplicit(f,[-3.5 6 -1.5 1.5]); %Size of your graph, x and y 
axis, lenght and where they start 

 h2.Color = 'b'; 

 h2.LineWidth = 2; 

 h2.DisplayName = 'Boundary between Beet Sugar & Cane Sugar'; 

 

 


